
Package: diveMove (via r-universe)
August 26, 2024

Type Package

Title Dive Analysis and Calibration

Version 1.6.2

Depends R (>= 3.5.0), methods, stats4

Suggests knitr, lattice, pander, rmarkdown, tinytest

Imports geosphere, KernSmooth, plotly, quantreg, uniReg

Author Sebastian P. Luque <spluque@gmail.com>

Maintainer Sebastian P. Luque <spluque@gmail.com>

Description Utilities to represent, visualize, filter, analyse, and
summarize time-depth recorder (TDR) data. Miscellaneous
functions for handling location data are also provided.

LazyLoad yes

LazyData no

Encoding UTF-8

ZipData no

BuildResaveData no

VignetteBuilder knitr

Collate AllClass.R AllGenerics.R AllMethod.R austFilter.R
bouts_helpers.R bouts.R calibrate.R detDive.R detPhase.R
distSpeed.R diveStats.R oneDiveStats.R plotTDR.R plotZOC.R
readLocs.R readTDR.R runquantile.R speedStats.R stampDive.R
zoc.R diveMove-deprecated.R diveMove-defunct.R zzz.R

NeedsCompilation yes

License GPL-3

URL https://github.com/spluque/diveMove

BugReports https://github.com/spluque/diveMove/issues

RoxygenNote 7.1.1

Repository https://ocean-tracking-network.r-universe.dev

RemoteUrl https://github.com/spluque/diveMove

1

https://github.com/spluque/diveMove
https://github.com/spluque/diveMove/issues

2 Contents

RemoteRef HEAD

RemoteSha c4eb56e7a798de6cadd683bdc824c2fff093d3f8

Contents

diveMove-package . 3
.runquantile . 4
austFilter . 7
bec,nls-method . 10
boutfreqs . 11
boutinit,data.frame-method . 12
Bouts-class . 13
boutsCDF . 14
boutsNLSll,Bouts-method . 14
calibrateDepth . 15
calibrateSpeed . 20
createTDR . 22
distSpeed . 24
diveModel-class . 25
dives . 27
diveStats . 28
extractDive,TDR,numeric,numeric-method . 30
fitMLEbouts,numeric-method . 31
fitNLSbouts,data.frame-method . 33
labelBouts,numeric-method . 35
plotBouts,nls,data.frame-method . 36
plotBoutsCDF,nls,numeric-method . 37
plotDiveModel,diveModel,missing-method . 38
plotTDR,POSIXt,numeric-method . 40
plotZOC,TDR,matrix-method . 42
readLocs . 44
rmixexp . 46
rqPlot . 47
sealLocs . 48
TDR-accessors . 49
TDR-class . 50
TDRcalibrate-accessors . 51
TDRcalibrate-class . 54
timeBudget,TDRcalibrate,logical-method . 55

Index 57

diveMove-package 3

diveMove-package Dive Analysis and Calibration

Description

This package is a collection of functions for visualizing and analyzing depth and speed data from
time-depth recorders TDRs. These can be used to zero-offset correct depth, calibrate speed, and
divide the record into different phases, or time budget. Functions are provided for calculating
summary dive statistics for the whole record, or at smaller scales within dives.

Author(s)

Sebastian P. Luque <spluque@gmail.com>

See Also

A vignette with a guide to this package is available by doing vignette("diveMove"). TDR-class,
calibrateDepth, calibrateSpeed, timeBudget, stampDive.

Examples

Too long for checks
read in data and create a TDR object
zz <- system.file(file.path("data", "dives.csv"),

package="diveMove", mustWork=TRUE)
(sealX <- readTDR(zz, speed=TRUE, sep=";", na.strings="", as.is=TRUE))

if (dev.interactive(orNone=TRUE)) plotTDR(sealX) # html plotly

detect periods of activity, and calibrate depth, creating
a "TDRcalibrate" object
if (dev.interactive(orNone=TRUE)) dcalib <- calibrateDepth(sealX)
Use the "offset" ZOC method to zero-offset correct depth at 3 m
(dcalib <- calibrateDepth(sealX, zoc.method="offset", offset=3))

if (dev.interactive(orNone=TRUE)) {
plot all readings and label them with the phase of the record
they belong to, excluding surface readings
plotTDR(dcalib, surface=FALSE)
plot the first 300 dives, showing dive phases and surface readings
plotTDR(dcalib, diveNo=seq(300), surface=TRUE)

}

calibrate speed (using changes in depth > 1 m and default remaining arguments)
(vcalib <- calibrateSpeed(dcalib, z=1))

Obtain dive statistics for all dives detected
dives <- diveStats(vcalib)
head(dives)

4 .runquantile

Attendance table
att <- timeBudget(vcalib, FALSE) # taking trivial aquatic activities into account
att <- timeBudget(vcalib, TRUE) # ignoring them
Identify which phase each dive belongs to
stamps <- stampDive(vcalib)
sumtab <- data.frame(stamps, dives)
head(sumtab)

.runquantile Quantile of Moving Window

Description

Moving (aka running, rolling) Window Quantile calculated over a vector

Usage

.runquantile(
x,
k,
probs,
type = 7,
endrule = c("quantile", "NA", "trim", "keep", "constant", "func"),
align = c("center", "left", "right")

)

Arguments

x numeric vector of length n or matrix with n rows. If x is a matrix than each
column will be processed separately.

k width of moving window; must be an integer between one and n.

probs numeric vector of probabilities with values in [0,1] range used by runquantile.

type an integer between 1 and 9 selecting one of the nine quantile algorithms, same
as type in quantile function. Another even more readable description of nine
ways to calculate quantiles can be found at http://mathworld.wolfram.com/
Quantile.html.

endrule character string indicating how the values at the beginning and the end, of the
array, should be treated. Only first and last k2 values at both ends are affected,
where k2 is the half-bandwidth k2 = k %/% 2.
* "quantile" Applies the quantile function to smaller and smaller sections of
the array. Equivalent to: for(i in 1:k2) out[i]=quantile(x[1:(i+k2)]). *
"trim" Trim the ends; output array length is equal to length(x)-2*k2 (out =
out[(k2+1):(n-k2)]). This option mimics output of apply (embed(x,k),1,FUN)

http://mathworld.wolfram.com/Quantile.html
http://mathworld.wolfram.com/Quantile.html

.runquantile 5

and other related functions. * "keep" Fill the ends with numbers from x vector
(out[1:k2] = x[1:k2]) * "constant" Fill the ends with first and last calcu-
lated value in output array (out[1:k2] = out[k2+1]) * "NA" Fill the ends with
NA’s (out[1:k2] = NA) * "func" Same as "quantile" but implimented in R.
This option could be very slow, and is included mostly for testing

align specifies whether result should be centered (default), left-aligned or right-aligned.
If endrule="quantile" then setting align to "left" or "right" will fall back on
slower implementation equivalent to endrule="func".

Details

Apart from the end values, the result of y = runquantile(x, k) is the same as “for(j=(1+k2):(n-k2))
y[j]=quintile(x[(j-k2):(j+k2)],na.rm = TRUE)”. It can handle non-finite numbers like NaN’s
and Inf’s (like quantile(x,na.rm = TRUE)).

The main incentive to write this set of functions was relative slowness of majority of moving win-
dow functions available in R and its packages. All functions listed in "see also" section are slower
than very inefficient “apply(embed(x,k),1,FUN)” approach. Relative speeds of runquantile is
O(n*k)

Function runquantile uses insertion sort to sort the moving window, but gain speed by remember-
ing results of the previous sort. Since each time the window is moved, only one point changes, all
but one points in the window are already sorted. Insertion sort can fix that in O(k) time.

Value

If x is a matrix than function runquantile returns a matrix of size [n × length(probs)]. If
x is vactor a than function runquantile returns a matrix of size [dim(x) × length(probs)]. If
endrule="trim" the output will have fewer rows.

Author(s)

Jarek Tuszynski (SAIC) <jaroslaw.w.tuszynski@saic.com>

References

About quantiles: Hyndman, R. J. and Fan, Y. (1996) Sample quantiles in statistical packages,
American Statistician, 50, 361.

About quantiles: Eric W. Weisstein. Quantile. From MathWorld– A Wolfram Web Resource.
http://mathworld.wolfram.com/Quantile.html

About insertion sort used in runmad and runquantile: R. Sedgewick (1988): Algorithms. Addison-
Wesley (page 99)

Examples

show plot using runquantile
k <- 31; n <- 200
x <- rnorm(n, sd=30) + abs(seq(n)-n/4)
y <- diveMove:::.runquantile(x, k, probs=c(0.05, 0.25, 0.5, 0.75, 0.95))
col <- c("black", "red", "green", "blue", "magenta", "cyan")

http://mathworld.wolfram.com/Quantile.html

6 .runquantile

plot(x, col=col[1], main="Moving Window Quantiles")
lines(y[,1], col=col[2])
lines(y[,2], col=col[3])
lines(y[,3], col=col[4])
lines(y[,4], col=col[5])
lines(y[,5], col=col[6])
lab=c("data", "runquantile(.05)", "runquantile(.25)", "runquantile(0.5)",

"runquantile(.75)", "runquantile(.95)")
legend(0,230, lab, col=col, lty=1)

basic tests against apply/embed
a <- diveMove:::.runquantile(x, k, c(0.3, 0.7), endrule="trim")
b <- t(apply(embed(x, k), 1, quantile, probs=c(0.3, 0.7)))
eps <- .Machine$double.eps ^ 0.5
stopifnot(all(abs(a - b) < eps))

Test against loop approach

This test works fine at the R prompt but fails during package check -
need to investigate
k <- 25; n <- 200
x <- rnorm(n, sd=30) + abs(seq(n) - n / 4) # create random data
x[seq(1, n, 11)] <- NaN; # add NANs
k2 <- k %/% 2
k1 <- k - k2 - 1
a <- diveMove:::.runquantile(x, k, probs=c(0.3, 0.8))
b <- matrix(0, n, 2)
for(j in 1:n) {

lo <- max(1, j - k1)
hi <- min(n, j + k2)
b[j,] <- quantile(x[lo:hi], probs=c(0.3, 0.8), na.rm=TRUE)

}
stopifnot(all(abs(a-b)<eps));

Compare calculation of array ends
a <- diveMove:::.runquantile(x, k, probs=0.4,

endrule="quantile") # fast C code
b <- diveMove:::.runquantile(x, k, probs=0.4,

endrule="func") # slow R code
stopifnot(all(abs(a - b) < eps))

Test if moving windows forward and backward gives the same results
k <- 51
a <- diveMove:::.runquantile(x, k, probs=0.4)
b <- diveMove:::.runquantile(x[n:1], k, probs=0.4)
stopifnot(all(a[n:1]==b, na.rm=TRUE))

Test vector vs. matrix inputs, especially for the edge handling
nRow <- 200; k <- 25; nCol <- 10
x <- rnorm(nRow, sd=30) + abs(seq(nRow) - n / 4)
x[seq(1, nRow, 10)] <- NaN # add NANs
X <- matrix(rep(x, nCol), nRow, nCol) # replicate x in columns of X
a <- diveMove:::.runquantile(x, k, probs=0.6)

austFilter 7

b <- diveMove:::.runquantile(X, k, probs=0.6)
stopifnot(all(abs(a - b[, 1]) < eps)) # vector vs. 2D array
stopifnot(all(abs(b[, 1] - b[, nCol]) < eps)) # compare rows within 2D array

Exhaustive testing of runquantile to standard R approach
numeric.test <- function (x, k) {

probs <- c(1, 25, 50, 75, 99) / 100
a <- diveMove:::.runquantile(x, k, c(0.3, 0.7), endrule="trim")
b <- t(apply(embed(x, k), 1, quantile, probs=c(0.3, 0.7), na.rm=TRUE))
eps <- .Machine$double.eps ^ 0.5
stopifnot(all(abs(a - b) < eps))

}
n <- 50
x <- rnorm(n,sd=30) + abs(seq(n) - n / 4) # nice behaving data
for(i in 2:5) numeric.test(x, i) # test small window sizes
for(i in 1:5) numeric.test(x, n - i + 1) # test large window size
x[seq(1, 50, 10)] <- NaN # add NANs and repet the test
for(i in 2:5) numeric.test(x, i) # test small window sizes
for(i in 1:5) numeric.test(x, n - i + 1) # test large window size

Speed comparison
Not run:
x <- runif(1e6); k=1e3 + 1
system.time(diveMove:::.runquantile(x, k, 0.5)) # Speed O(n*k)

End(Not run)

austFilter Filter satellite locations

Description

Apply a three stage algorithm to eliminate erroneous locations, based on established procedures.

Usage

austFilter(
time,
lon,
lat,
id = gl(1, 1, length(time)),
speed.thr,
dist.thr,
window = 5,
...

)

grpSpeedFilter(x, speed.thr, window = 5, ...)

rmsDistFilter(x, speed.thr, window = 5, dist.thr, ...)

8 austFilter

Arguments

time POSIXct object with dates and times for each point.

lon numeric vectors of longitudes, in decimal degrees.

lat numeric vector of latitudes, in decimal degrees.

id A factor grouping points in different categories (e.g. individuals).

speed.thr numeric scalar: speed threshold (m/s) above which filter tests should fail any
given point.

dist.thr numeric scalar: distance threshold (km) above which the last filter test should
fail any given point.

window integer: the size of the moving window over which tests should be carried out.

... Arguments ultimately passed to distSpeed.

x 3-column matrix with column 1: POSIXct vector; column 2: numeric longitude
vector; column 3: numeric latitude vector.

Details

These functions implement the location filtering procedure outlined in Austin et al. (2003). grpSpeedFilter
and rmsDistFilter can be used to perform only the first stage or the second and third stages of the
algorithm on their own, respectively. Alternatively, the three filters can be run in a single call using
austFilter.

The first stage of the filter is an iterative process which tests every point, except the first and last
(w/2) - 1 (where w is the window size) points, for travel velocity relative to the preceeding/following
(w/2) - 1 points. If all w - 1 speeds are greater than the specified threshold, the point is marked as
failing the first stage. In this case, the next point is tested, removing the failing point from the set of
test points.

The second stage runs McConnell et al. (1992) algorithm, which tests all the points that passed the
first stage, in the same manner as above. The root mean square of all w - 1 speeds is calculated,
and if it is greater than the specified threshold, the point is marked as failing the second stage (see
Warning section below).

The third stage is run simultaneously with the second stage, but if the mean distance of all w - 1
pairs of points is greater than the specified threshold, then the point is marked as failing the third
stage.

The speed and distance threshold should be obtained separately (see distSpeed).

Value

rmsDistFilter and austFilter return a matrix with 2 or 3 columns, respectively, of logical vec-
tors with values TRUE for points that passed each stage. For the latter, positions that fail the first
stage fail the other stages too. The second and third columns returned by austFilter, as well as
those returned by rmsDistFilter are independent of one another; i.e. positions that fail stage 2 do
not necessarily fail stage 3.

grpSpeedFilter logical vector indicating those lines that passed the test.

austFilter 9

Functions

• grpSpeedFilter: Do stage one on 3-column matrix x

• rmsDistFilter: Apply McConnell et al’s filter and Austin et al’s last stage

Warning

This function applies McConnell et al.’s filter as described in Freitas et al. (2008). According to
the original description of the algorithm in McConnell et al. (1992), the filter makes a single pass
through all locations. Austin et al. (2003) and other authors may have used the filter this way.
However, as Freitas et al. (2008) noted, this causes locations adjacent to those flagged as failing to
fail also, thereby rejecting too many locations. In diveMove, the algorithm was modified to reject
only the “peaks” in each series of consecutive locations having root mean square speed higher than
threshold.

Author(s)

Sebastian Luque <spluque@gmail.com> and Andy Liaw.

References

McConnell BJ, Chambers C, Fedak MA. 1992. Foraging ecology of southern elephant seals in
relation to bathymetry and productivity of the Southern Ocean. Antarctic Science 4:393-398.

Austin D, McMillan JI, Bowen D. 2003. A three-stage algorithm for filtering erroneous Argos
satellite locations. Marine Mammal Science 19: 371-383.

Freitas C, Lydersen, C, Fedak MA, Kovacs KM. 2008. A simple new algorithm to filter marine
mammal ARGOS locations. Marine Mammal Science DOI: 10.1111/j.1748-7692.2007.00180.x

See Also

distSpeed

Examples

Using the Example from '?readLocs':
utils::example("readLocs", package="diveMove",

ask=FALSE, echo=FALSE)
ringy <- subset(locs, id == "ringy" & !is.na(lon) & !is.na(lat))

Examples below use default Meeus algorithm for computing distances.
See ?distSpeed for specifying other methods.
Austin et al.'s group filter alone
grp <- grpSpeedFilter(ringy[, 3:5], speed.thr=1.1)

McConnell et al.'s filter (root mean square test), and distance test
alone
rms <- rmsDistFilter(ringy[, 3:5], speed.thr=1.1, dist.thr=300)

Show resulting tracks
n <- nrow(ringy)

10 bec,nls-method

plot.nofilter <- function(main) {
plot(lat ~ lon, ringy, type="n", main=main)
with(ringy, segments(lon[-n], lat[-n], lon[-1], lat[-1]))

}
layout(matrix(1:4, ncol=2, byrow=TRUE))
plot.nofilter(main="Unfiltered Track")
plot.nofilter(main="Group Filter")
n1 <- length(which(grp))
with(ringy[grp,], segments(lon[-n1], lat[-n1], lon[-1], lat[-1],

col="blue"))
plot.nofilter(main="Root Mean Square Filter")
n2 <- length(which(rms[, 1]))
with(ringy[rms[, 1],], segments(lon[-n2], lat[-n2], lon[-1], lat[-1],

col="red"))
plot.nofilter(main="Distance Filter")
n3 <- length(which(rms[, 2]))
with(ringy[rms[, 2],], segments(lon[-n3], lat[-n3], lon[-1], lat[-1],

col="green"))

All three tests (Austin et al. procedure)
austin <- with(ringy, austFilter(time, lon, lat, speed.thr=1.1,

dist.thr=300))
layout(matrix(1:4, ncol=2, byrow=TRUE))
plot.nofilter(main="Unfiltered Track")
plot.nofilter(main="Stage 1")
n1 <- length(which(austin[, 1]))
with(ringy[austin[, 1],], segments(lon[-n1], lat[-n1], lon[-1], lat[-1],

col="blue"))
plot.nofilter(main="Stage 2")
n2 <- length(which(austin[, 2]))
with(ringy[austin[, 2],], segments(lon[-n2], lat[-n2], lon[-1], lat[-1],

col="red"))
plot.nofilter(main="Stage 3")
n3 <- length(which(austin[, 3]))
with(ringy[austin[, 3],], segments(lon[-n3], lat[-n3], lon[-1], lat[-1],

col="green"))

bec,nls-method Calculate bout ending criteria from model coefficients

Description

Calculate bout ending criteria from model coefficients

Usage

S4 method for signature 'nls'
bec(fit)

S4 method for signature 'mle'
bec(fit)

boutfreqs 11

Arguments

fit Object of class nls or mle.

Value

numeric vector with the bout ending criterion or criteria derived from the model.

Functions

• bec,nls-method: Calculate BEC on nls object
• bec,mle-method: Calculate BEC on mle object

Author(s)

Sebastian P. Luque <spluque@gmail.com>

boutfreqs Histogram of log-transformed frequencies

Description

Histogram of log-transformed frequencies

Usage

boutfreqs(x, bw, method = c("standard", "seq.diff"), plot = TRUE, ...)

Arguments

x numeric vector on which bouts will be identified based on “method”. For labelBouts
it can also be a matrix with different variables for which bouts should be identi-
fied.

bw numeric scalar: bin width for the histogram.
method character: method used for calculating the frequencies: “standard” simply uses

x, while “seq.diff” uses the sequential differences method.
plot logical, whether to plot results or not.
... For boutfreqs, arguments passed to hist (must exclude breaks and include.lowest)

Value

boutfreqs returns an object of class Bouts, with slot lnfreq consisting of a data frame with
components lnfreq containing the log frequencies and x, containing the corresponding mid points
of the histogram. Empty bins are excluded. A plot (histogram of input data) is produced as a side
effect if argument plot is TRUE. See the Details section.

Author(s)

Sebastian P. Luque <spluque@gmail.com>

12 boutinit,data.frame-method

boutinit,data.frame-method

Fit "broken stick" model to log frequency data for identification of
bouts of behaviour

Description

Fits "broken stick" model to the log frequencies modelled as a function of x (well, the midpoints of
the binned data), using chosen value(s) to separate the two or three processes.

Usage

S4 method for signature 'data.frame'
boutinit(obj, x.break, plot = TRUE, ...)

S4 method for signature 'Bouts'
boutinit(obj, x.break, plot = TRUE, ...)

Arguments

obj Object of class Bouts or data.frame.

x.break Numeric vector of length 1 or 2 with x value(s) defining the break(s) point(s)
for broken stick model, such that x < x.break[1] is 1st process, and x >=
x.break[1] & x < x.break[2] is 2nd one, and x >= x.break[2] is 3rd one.

plot logical, whether to plot results or not.

... arguments passed to plot (must exclude type).

Value

(2,N) matrix with as many columns as the number of processes implied by x.break (i.e. length(x.break)
+ 1). Rows are named a and lambda, corresponding to starting values derived from broken stick
model. A plot is produced as a side effect if argument plot is TRUE.

Methods (by class)

• data.frame: Fit "broken-stick" model on data.frame object

• Bouts: Fit "broken-stick" model on Bouts object

Author(s)

Sebastian P. Luque <spluque@gmail.com>

Bouts-class 13

Examples

2-process
utils::example("rmixexp", package="diveMove", ask=FALSE)
'rndproc2' is a random sample vector from the example
xbouts2 <- boutfreqs(rndprocs2, 5) # Bouts class result
(startval2 <- boutinit(xbouts2, 80))

3-process
'rndproc3' is a random sample vector from the example
xbouts3 <- boutfreqs(rndprocs3, 5)
(startval3 <- boutinit(xbouts3, c(75, 220)))

Bouts-class Class "Bouts" for representing Poisson mixtures for identification of
behavioural bouts

Description

Base class for storing key information for modelling and detecting bouts in behavioural data.

Slots

x Object of class "numeric". Data to be modelled.

method Object of class "character". A string indicating the type of frequency to calculate from
x: "standard" or "seq.diff". If "standard", frequencies are calculated directly from x, and from
the sequential differences in x otherwise.

lnfreq Object of class data.frame. Columns named lnfreq (log frequencies) and x (mid points
of histogram bins).

Objects from the class

Objects can be created most conveniently via the boutfreqs function, which sets the lnfreq slot,
but can also be created via new("Bouts").

Author(s)

Sebastian P. Luque <spluque@gmail.com>

See Also

boutfreqs

14 boutsNLSll,Bouts-method

boutsCDF Estimated cumulative frequency for two- or three-process Poisson mix-
ture models

Description

Estimated cumulative frequency for two- or three-process Poisson mixture models

Usage

boutsCDF(x, p, lambdas)

Arguments

x numeric vector described by model.
p numeric scalar or vector of proportion parameters.
lambdas numeric vector of rate parameters.

Value

numeric vector with cumulative frequency.

Author(s)

Sebastian P. Luque <spluque@gmail.com>

Examples

utils::example("rmixexp", package="diveMove", ask=FALSE)
boutsCDF(rndprocs3, p=p_true, lambdas=lda_true)

boutsNLSll,Bouts-method

Generalized log likelihood function taking any number of Poisson pro-
cesses in a "broken-stick" model

Description

Generalized log likelihood function taking any number of Poisson processes in a "broken-stick"
model

Usage

S4 method for signature 'Bouts'
boutsNLSll(obj, coefs)

S4 method for signature 'numeric'
boutsNLSll(obj, coefs)

calibrateDepth 15

Arguments

obj Object of class Bouts or numeric vector of independent data to be described by
the function.

coefs matrix of coefficients (a and lambda) in rows for each process of the model in
columns.

Value

numeric vector as x with the evaluated function.

Methods (by class)

• Bouts: Log likelihood Bouts method

• numeric: Log likelihood function numeric method

Author(s)

Sebastian P. Luque <spluque@gmail.com>

calibrateDepth Calibrate Depth and Generate a "TDRcalibrate" object

Description

Detect periods of major activities in a TDR record, calibrate depth readings, and generate a TDRcalibrate
object essential for subsequent summaries of diving behaviour.

Usage

calibrateDepth(
x,
dry.thr = 70,
wet.cond,
wet.thr = 3610,
dive.thr = 4,
zoc.method = c("visual", "offset", "filter"),
...,
interp.wet = FALSE,
dive.model = c("unimodal", "smooth.spline"),
smooth.par = 0.1,
knot.factor = 3,
descent.crit.q = 0,
ascent.crit.q = 0

)

16 calibrateDepth

Arguments

x An object of class TDR for calibrateDepth or an object of class TDRcalibrate
for calibrateSpeed.

dry.thr numeric: dry error threshold in seconds. Dry phases shorter than this threshold
will be considered as wet.

wet.cond logical: indicates which observations should be considered wet. If it is not
provided, records with non-missing depth are assumed to correspond to wet
conditions (see ‘Details’ and ‘Note’ below).

wet.thr numeric: wet threshold in seconds. At-sea phases shorter than this threshold
will be considered as trivial wet.

dive.thr numeric: threshold depth below which an underwater phase should be consid-
ered a dive.

zoc.method character string to indicate the method to use for zero offset correction. One of
“visual”, “offset”, or “filter” (see ‘Details’).

... Arguments required for ZOC methods filter (k, probs, depth.bounds (de-
faults to range), na.rm (defaults to TRUE)) and offset (offset).

interp.wet logical: if TRUE (default is FALSE), then an interpolating spline function is
used to impute NA depths in wet periods (after ZOC). Use with caution: it may
only be useful in cases where the missing data pattern in wet periods is restricted
to shallow depths near the beginning and end of dives. This pattern is common
in some satellite-linked TDRs.

dive.model character string specifying what model to use for each dive for the purpose of
dive phase identification. One of “smooth.spline” or “unimodal”, to choose
among smoothing spline or unimodal regression (see ‘Details’). For dives with
less than five observations, smoothing spline regression is used regardless (see
‘Details’).

smooth.par numeric scalar representing amount of smoothing (argument spar in smooth.spline)
when dive.model="smooth.spline". If it is NULL, then the smoothing pa-
rameter is determined by Generalized Cross-validation (GCV). Ignored with de-
fault dive.model="unimodal".

knot.factor numeric scalar that multiplies the number of samples in the dive. This is used to
construct the time predictor for the derivative.

descent.crit.q numeric: critical quantile of rates of descent below which descent is deemed to
have ended.

ascent.crit.q numeric: critical quantile of rates of ascent above which ascent is deemed to
have started.

Details

This function is really a wrapper around .detPhase, .detDive, and .zoc which perform the work
on simplified objects. It performs wet/dry phase detection, zero-offset correction of depth, and
detection of dives, as well as proper labelling of the latter.

The procedure starts by zero-offset correcting depth (see ‘ZOC’ below), and then a factor is created
with value “L” (dry) for rows with NAs for depth and value “W” (wet) otherwise. This assumes

calibrateDepth 17

that TDRs were programmed to turn off recording of depth when instrument is dry (typically by
means of a salt-water switch). If this assumption cannot be made for any reason, then a logical
vector as long as the time series should be supplied as argument wet.cond to indicate which obser-
vations should be considered wet. This argument is directly analogous to the subset argument in
subset.data.frame, so it can refer to any variable in the TDR object (see ‘Note’ section below).
The duration of each of these phases of activity is subsequently calculated. If the duration of a dry
phase (“L”) is less than dry.thr, then the values in the factor for that phase are changed to “W”
(wet). The duration of phases is then recalculated, and if the duration of a phase of wet activity is
less than wet.thr, then the corresponding value for the factor is changed to “Z” (trivial wet). The
durations of all phases are recalculated a third time to provide final phase durations.

Some instruments produce a peculiar pattern of missing data near the surface, at the beginning
and/or end of dives. The argument interp.wet may help to rectify this problem by using an
interpolating spline function to impute the missing data, constraining the result to a minimum depth
of zero. Please note that this optional step is performed after ZOC and before identifying dives,
so that interpolation is performed through dry phases coded as wet because their duration was
briefer than dry.thr. Therefore, dry.thr must be chosen carefully to avoid interpolation through
legitimate dry periods.

The next step is to detect dives whenever the zero-offset corrected depth in an underwater phase
is below the specified dive threshold. A new factor with finer levels of activity is thus generated,
including “U” (underwater), and “D” (diving) in addition to the ones described above.

Once dives have been detected and assigned to a period of wet activity, phases within dives are
identified using the descent, ascent and wiggle criteria (see ‘Detection of dive phases’ below). This
procedure generates a factor with levels “D”, “DB”, “B”, “BA”, “DA”, “A”, and “X”, breaking the
input into descent, descent/bottom, bottom, bottom/ascent, ascent, descent/ascent (ocurring when
no bottom phase can be detected) and non-dive (surface), respectively.

ZOC

This procedure is required to correct drifts in the pressure transducer of TDR records and noise in
depth measurements. Three methods are available to perform this correction.

Method “visual” calls plotTDR, which plots depth and, optionally, speed vs. time with the ability of
zooming in and out on time, changing maximum depths displayed, and panning through time. The
button to zero-offset correct sections of the record allows for the collection of ‘x’ and ‘y’ coordinates
for two points, obtained by clicking on the plot region. The first point clicked represents the offset
and beginning time of section to correct, and the second one represents the ending time of the section
to correct. Multiple sections of the record can be corrected in this manner, by panning through the
time and repeating the procedure. In case there’s overlap between zero offset corrected windows,
the last one prevails.

Method “offset” can be used when the offset is known in advance, and this value is used to correct
the entire time series. Therefore, offset=0 specifies no correction.

Method “filter” implements a smoothing/filtering mechanism where running quantiles can be ap-
plied to depth measurements in a recursive manner (Luque and Fried 2011), using .depth.filter.
The method calculates the first running quantile defined by probs[1] on a moving window of size
k[1]. The next running quantile, defined by probs[2] and k[2], is applied to the smoothed/filtered
depth measurements from the previous step, and so on. The corrected depth measurements (d) are
calculated as:

d = d0 − dn

18 calibrateDepth

where d0 is original depth and dn is the last smoothed/filtered depth. This method is under develop-
ment, but reasonable results can be achieved by applying two filters (see ‘Examples’). The default
na.rm=TRUE works well when there are no level shifts between non-NA phases in the data, but
na.rm=FALSE is better in the presence of such shifts. In other words, there is no reason to pollute
the moving window with NAs when non-NA phases can be regarded as a continuum, so splicing
non-NA phases makes sense. Conversely, if there are level shifts between non-NA phases, then it
is better to retain NA phases to help the algorithm recognize the shifts while sliding the window(s).
The search for the surface can be limited to specified bounds during smoothing/filtering, so that
observations outside these bounds are interpolated using the bounded smoothed/filtered series.

Once the whole record has been zero-offset corrected, remaining depths below zero, are set to zero,
as these are assumed to indicate values at the surface.

Detection of dive phases

The process for each dive begins by taking all observations below the dive detection threshold, and
setting the beginning and end depths to zero, at time steps prior to the first and after the last, re-
spectively. The latter ensures that descent and ascent derivatives are non-negative and non-positive,
respectively, so that the end and beginning of these phases are not truncated. The next step is to
fit a model to each dive. Two models can be chosen for this purpose: ‘unimodal’ (default) and
‘smooth.spline’.

Both models consist of a cubic spline, and its first derivative is evaluated to investigate changes
in vertical rate. Therefore, at least 4 observations are required for each dive, so the time series is
linearly interpolated at equally spaced time steps if this limit is not achieved in the current dive.
Wiggles at the beginning and end of the dive are assumed to be zero offset correction errors, so
depth observations at these extremes are interpolated between zero and the next observations when
this occurs.

‘unimodal’

In this default model, the spline is constrained to be unimodal (Koellmann et al. 2014), assuming
the diver must return to the surface to breathe. The model is fitted using the uniReg package (see
unireg). This model and constraint are consistent with the definition of dives in air-breathers, so
is certainly appropriate for this group of divers. A major advantage of this approach over the next
one is that the degree of smoothing is determined via restricted maximum likelihood, and has no
influence on identifying the transition between descent and ascent. Therefore, unimodal regression
splines make the latter transition clearer compared to using smoothing splines.

However, note that dives with less than five samples are fit using smoothing splines (see section
below) regardless, as they produce the same fit as unimodal regression but much faster. There-
fore, ensure that the parameters for that model are appropriate for the data, although defaults are
reasonable.

‘smooth.spline’

In this model, specified via dive.model="smooth.spline", a smoothing spline is used to model
each dive (see smooth.spline), using the chosen smoothing parameter.

Dive phases identified via this model, however, are highly sensitive to the degree of smoothing
(smooth.par) used, thus making it difficult to determine what amount of smoothing is adequate.

A comparison of these methods is shown in the Examples section of diveModel.

The first derivate of the spline is evaluated at a set of knots to calculate the vertical rate throughout
the dive and determine the end of descent and beginning of ascent. This set of knots is established
using a regular time sequence with beginning and end equal to the extremes of the input sequence,

calibrateDepth 19

and with length equal to N × knot.factor. Equivalent procedures are used for detecting descent
and ascent phases.

Once one of the models above has been fitted to each dive, the quantile corresponding to (descent.crit.q)
of all the positive derivatives (rate of descent) at the beginning of the dive is used as threshold for
determining the end of descent. Descent is deemed to have ended at the first minimum derivative,
and the nearest input time observation is considered to indicate the end of descent. The sign of
the comparisons is reversed for detecting the ascent. If observed depth to the left and right of the
derivative defining the ascent are the same, the right takes precedence.

The particular dive phase categories are subsequently defined using simple set operations.

Value

An object of class TDRcalibrate.

Note

Note that the condition implied with argument wet.cond is evaluated after the ZOC procedure, so
it can refer to corrected depth. In many cases, not all variables in the TDR object are sampled with
the same frequency, so they may need to be interpolated before using them for this purpose. Note
also that any of these variables may contain similar problems as those dealth with during ZOC, so
programming instruments to record depth only when wet is likely the best way to ensure proper
detection of wet/dry conditions.

Author(s)

Sebastian P. Luque <spluque@gmail.com>

References

Koellmann, C., Ickstadt, K. and Fried, R. (2014) Beyond unimodal regression: modelling multi-
modality with piecewise unimodal, mixture or additive regression. Technical Report 8. https:
//sfb876.tu-dortmund.de/FORSCHUNG/techreports.html, SFB 876, TU Dortmund

Luque, S.P. and Fried, R. (2011) Recursive filtering for zero offset correction of diving depth time
series. PLoS ONE 6:e15850

See Also

TDRcalibrate, .zoc, .depthFilter, .detPhase, .detDive, plotTDR, and plotZOC to visually
assess ZOC procedure. See diveModel, smooth.spline, unireg for dive models.

Examples

data(divesTDR)
divesTDR

Too long for checks
Consider a 3 m offset, a dive threshold of 3 m, the 1% quantile for
critical vertical rates, and a set of knots 20 times as long as the
observed time steps. Default smoothing spline model for dive phase

https://sfb876.tu-dortmund.de/FORSCHUNG/techreports.html
https://sfb876.tu-dortmund.de/FORSCHUNG/techreports.html

20 calibrateSpeed

detection, using default smoothing parameter.
(dcalib <- calibrateDepth(divesTDR, dive.thr=3, zoc.method="offset",

offset=3, descent.crit.q=0.01, ascent.crit.q=0,
knot.factor=20))

Or ZOC algorithmically with method="filter":
dcalib <- calibrateDepth(divesTDR, dive.thr=3, zoc.method="filter",
k=c(3, 5760), probs=c(0.5, 0.02), na.rm=TRUE,
descent.crit.q=0.01, ascent.crit.q=0,
knot.factor=20))

If no ZOC required:
data(divesTDRzoc)
(dcalib <- calibrateDepth(divesTDRzoc, dive.thr=3, zoc.method="offset",

offset=0, descent.crit.q=0.01, ascent.crit.q=0,
knot.factor=20))

calibrateSpeed Calibrate and build a "TDRcalibrate" object

Description

These functions create a TDRcalibrate object which is necessary to obtain dive summary statistics.

Usage

calibrateSpeed(
x,
tau = 0.1,
contour.level = 0.1,
z = 0,
bad = c(0, 0),
main = slot(getTDR(x), "file"),
coefs,
plot = TRUE,
postscript = FALSE,
...

)

Arguments

x An object of class TDR for calibrateDepth or an object of class TDRcalibrate
for calibrateSpeed.

tau numeric scalar: quantile on which to regress speed on rate of depth change;
passed to rq.

calibrateSpeed 21

contour.level numeric scalar: the mesh obtained from the bivariate kernel density estimation
corresponding to this contour will be used for the quantile regression to define
the calibration line.

z numeric scalar: only changes in depth larger than this value will be used for
calibration.

bad numeric vector of length 2 indicating that only rates of depth change and speed
greater than the given value should be used for calibration, respectively.

main, ... Arguments passed to rqPlot.

coefs numeric: known speed calibration coefficients from quantile regression as a vec-
tor of length 2 (intercept, slope). If provided, these coefficients are used for
calibrating speed, ignoring all other arguments, except x.

plot logical: whether to plot the results.

postscript logical: whether to produce postscript file output.

Details

This calibrates speed readings following the procedure outlined in Blackwell et al. (1999).

Value

An object of class TDRcalibrate.

Author(s)

Sebastian P. Luque <spluque@gmail.com>

References

Blackwell S, Haverl C, Le Boeuf B, Costa D (1999). A method for calibrating swim-speed recorders.
Marine Mammal Science 15(3):894-905.

See Also

TDRcalibrate

Examples

Too long for checks
Continuing the Example from '?calibrateDepth':
utils::example("calibrateDepth", package="diveMove",

ask=FALSE, echo=FALSE, run.donttest=TRUE)
dcalib # the 'TDRcalibrate' that was created

Calibrate speed using only changes in depth > 2 m
vcalib <- calibrateSpeed(dcalib, z=2)
vcalib

22 createTDR

createTDR Read comma-delimited file with "TDR" data

Description

Read a delimited (*.csv) file containing time-depth recorder (TDR) data from various TDR models.
Return a TDR or TDRspeed object. createTDR creates an object of one of these classes from other
objects.

Usage

createTDR(
time,
depth,
concurrentData = data.frame(matrix(ncol = 0, nrow = length(time))),
speed = FALSE,
dtime,
file

)

readTDR(
file,
dateCol = 1,
timeCol = 2,
depthCol = 3,
speed = FALSE,
subsamp = 5,
concurrentCols = 4:6,
dtformat = "%d/%m/%Y %H:%M:%S",
tz = "GMT",
...

)

Arguments

time A POSIXct object with date and time readings for each reading.

depth numeric vector with depth readings.

concurrentData data.frame with additional, concurrent data collected.

speed logical: whether speed is included in one of the columns of concurrentCols.

dtime numeric scalar: sampling interval used in seconds. If missing, it is calculated
from the time argument.

file character: a string indicating the path to the file to read. This can also be a
text-mode connection, as allowed in read.csv.

dateCol integer: column number containing dates, and optionally, times.

timeCol integer: column number with times.

createTDR 23

depthCol integer: column number containing depth readings.

subsamp numeric scalar: subsample rows in file with subsamp interval, in s.

concurrentCols integer vector of column numbers to include as concurrent data collected.

dtformat character: a string specifying the format in which the date and time columns,
when pasted together, should be interpreted (see strptime).

tz character: a string indicating the time zone assumed for the date and time read-
ings.

... Passed to read.csv

Details

The input file is assumed to have a header row identifying each field, and all rows must be complete
(i.e. have the same number of fields). Field names need not follow any convention. However, depth
and speed are assumed to be in m, and m · s−1, respectively, for further analyses.

If speed is TRUE and concurrentCols contains a column named speed or velocity, then an object of
class TDRspeed is created, where speed is considered to be the column matching this name.

Value

An object of class TDR or TDRspeed.

Functions

• readTDR: Create TDR object from file

Note

Although TDR and TDRspeed classes check that time stamps are in increasing order, the integrity of
the input must be thoroughly verified for common errors present in text output from TDR devices
such as duplicate records, missing time stamps and non-numeric characters in numeric fields. These
errors are much more efficiently dealt with outside of GNU using tools like GNU awk or GNU sed, so
diveMove does not currently attempt to fix these errors.

Author(s)

Sebastian P. Luque <spluque@gmail.com>

Examples

Do example to define object zz with location of dataset
utils::example("dives", package="diveMove",

ask=FALSE, echo=FALSE)
srcfn <- basename(zz)
readTDR(zz, speed=TRUE, sep=";", na.strings="", as.is=TRUE)

Or more pedestrian
tdrX <- read.csv(zz, sep=";", na.strings="", as.is=TRUE)
date.time <- paste(tdrX$date, tdrX$time)
tdr.time <- as.POSIXct(strptime(date.time, format="%d/%m/%Y %H:%M:%S"),

24 distSpeed

tz="GMT")
createTDR(tdr.time, tdrX$depth, concurrentData=data.frame(speed=tdrX$speed),

file=srcfn, speed=TRUE)

distSpeed Calculate distance and speed between locations

Description

Calculate distance, time difference, and speed between pairs of points defined by latitude and lon-
gitude, given the time at which all points were measured.

Usage

distSpeed(pt1, pt2, method = c("Meeus", "VincentyEllipsoid"))

Arguments

pt1 A matrix or data.frame with three columns; the first a POSIXct object with
dates and times for all points, the second and third numeric vectors of longitude
and latitude for all points, respectively, in decimal degrees.

pt2 A matrix with the same size and structure as pt1.

method character indicating which of the distance algorithms from geosphere-package
to use (only default parameters used). Only Meeus and VincentyEllipsoid are
supported for now.

Value

A matrix with three columns: distance (km), time difference (s), and speed (m/s).

Author(s)

Sebastian P. Luque <spluque@gmail.com>

Examples

Using the Example from '?readLocs':
utils::example("readLocs", package="diveMove",

ask=FALSE, echo=FALSE)

Travel summary between successive standard locations
locs.std <- subset(locs, subset=class == "0" | class == "1" |

class == "2" | class == "3" &
!is.na(lon) & !is.na(lat))

Default Meeus method
locs.std.tr <- by(locs.std, locs.std$id, function(x) {

distSpeed(x[-nrow(x), 3:5], x[-1, 3:5])
})

diveModel-class 25

lapply(locs.std.tr, head)

Particular quantiles from travel summaries
lapply(locs.std.tr, function(x) {

quantile(x[, 3], seq(0.90, 0.99, 0.01), na.rm=TRUE) # speed
})
lapply(locs.std.tr, function(x) {

quantile(x[, 1], seq(0.90, 0.99, 0.01), na.rm=TRUE) # distance
})

Travel summary between two arbitrary sets of points
pts <- seq(10)
(meeus <- distSpeed(locs[pts, 3:5], locs[pts + 1, 3:5]))
(vincenty <- distSpeed(locs[pts, 3:5],

locs[pts + 1, 3:5],
method="VincentyEllipsoid"))

meeus - vincenty

diveModel-class Class "diveModel" for representing a model for identifying dive phases

Description

Details of model used to identify the different phases of a dive.

Slots

label.matrix Object of class "matrix". A 2-column character matrix with row numbers match-
ing each observation to the full TDR object, and a vector labelling the phases of each dive.

model Object of class "character". A string identifying the specific model fit to dives for the
purpose of dive phase identification. It should be one of ‘smooth.spline’ or ‘unimodal’.

dive.spline Object of class "smooth.spline". Details of cubic smoothing spline fit (see smooth.spline).

spline.deriv Object of class "list". A list with the first derivative of the smoothing spline (see
predict.smooth.spline).

descent.crit Object of class "numeric". The index of the observation at which the descent was
deemed to have ended (from initial surface observation).

ascent.crit Object of class "numeric". the index of the observation at which the ascent was
deemed to have ended (from initial surface observation).

descent.crit.rate Object of class "numeric". The rate of descent corresponding to the critical
quantile used.

ascent.crit.rate Object of class "numeric". The rate of ascent corresponding to the critical
quantile used.

26 diveModel-class

Objects from the Class

Objects can be created by calls of the form new("diveModel", ...).

‘diveModel’ objects contain all relevant details of the process to identify phases of a dive. Objects of
this class are typically generated during depth calibration, using calibrateDepth, more specifically
.cutDive.

Author(s)

Sebastian P. Luque <spluque@gmail.com>

See Also

getDiveDeriv, plotDiveModel

Examples

showClass("diveModel")

Too long for checks
Continuing the Example from '?calibrateDepth':
utils::example("calibrateDepth", package="diveMove",

ask=FALSE, echo=FALSE, run.donttest=TRUE)
dcalib # the 'TDRcalibrate' that was created

Compare dive models for dive phase detection
diveNo <- 255
diveX <- as.data.frame(extractDive(dcalib, diveNo=diveNo))
diveX.m <- cbind(as.numeric(row.names(diveX[-c(1, nrow(diveX)),])),

diveX$depth[-c(1, nrow(diveX))],
diveX$time[-c(1, nrow(diveX))])

calibrateDepth() default unimodal regression. Number of inner knots is
either 10 or the number of samples in the dive, whichever is larger.
(phases.uni <- diveMove:::.cutDive(diveX.m, smooth.par=0.2, knot.factor=20,

dive.model="unimodal",
descent.crit.q=0.01, ascent.crit.q=0))

Smoothing spline model, using default smoothing parameter.
(phases.spl <- diveMove:::.cutDive(diveX.m, smooth.par=0.2, knot.factor=20,

dive.model="smooth.spline",
descent.crit.q=0.01, ascent.crit.q=0))

plotDiveModel(phases.spl,
diveNo=paste(diveNo, ", smooth.par=", 0.2, sep=""))

plotDiveModel(phases.uni, diveNo=paste(diveNo))

dives 27

dives Sample of TDR data from a fur seal

Description

This data set is meant to show a typical organization of a TDR *.csv file, suitable as input for
readTDR, or to construct a TDR object. divesTDR is an example TDR object.

Format

Bzip2-compressed file. A comma separated value (csv) file with 34199 TDR readings, measured at
5 s intervals, with the following columns:

date Date

time Time

depth Depth in m

light Light level

temperature Temperature in degrees Celsius

speed Speed in m/s

The data are also provided as a TDR object (*.RData format) for convenience.

Details

The data are a subset of an entire TDR record, so they are not meant to make valid inferences from
this particular individual/deployment.

divesTDR is a TDR object representation of the data in dives.

divesTDRzoc is the same data, but has been zero-offset corrected with the "filter" method (k=c(3,
5760), probs=c(0.5, 0.02), na.rm=TRUE, depth.bounds=range(getDepth(divesTDR))).

Source

Sebastian P. Luque, Christophe Guinet, John P.Y. Arnould

See Also

readTDR, diveStats.

Examples

zz <- system.file(file.path("data", "dives.csv"),
package="diveMove", mustWork=TRUE)

str(read.csv(zz, sep=";", na.strings=""))

28 diveStats

diveStats Per-dive statistics

Description

Calculate dive statistics in TDR records.

Usage

diveStats(x, depth.deriv = TRUE)

oneDiveStats(x, interval, speed = FALSE)

stampDive(x, ignoreZ = TRUE)

Arguments

x A TDRcalibrate-class object for diveStats and stampDive, and a data.frame
containing a single dive’s data (a factor identifying the dive phases, a POSIXct
object with the time for each reading, a numeric depth vector, and a numeric
speed vector) for oneDiveStats.

depth.deriv logical: should depth derivative statistics be calculated?

interval numeric scalar: sampling interval for interpreting x.

speed logical: should speed statistics be calculated?

ignoreZ logical: whether phases should be numbered considering all aquatic activities
(“W” and “Z”) or ignoring “Z” activities.

Details

diveStats calculates various dive statistics based on time and depth for an entire TDR record.
oneDiveStats obtains these statistics from a single dive, and stampDive stamps each dive with
associated phase information.

Value

A data.frame with one row per dive detected (durations are in s, and linear variables in m):

begdesc A POSIXct object, specifying the start time of each dive.

enddesc A POSIXct object, as begdesc indicating descent’s end time.

begasc A POSIXct object, as begdesc indicating the time ascent began.

desctim Descent duration of each dive.

botttim Bottom duration of each dive.

asctim Ascent duration of each dive.

divetim Dive duration.

diveStats 29

descdist Numeric vector with last descent depth.

bottdist Numeric vector with the sum of absolute depth differences while at the bottom
of each dive; measure of amount of “wiggling” while at bottom.

ascdist Numeric vector with first ascent depth.

bottdep.mean Mean bottom depth.

bottdep.median Median bottom depth.

bottdep.sd Standard deviation of bottom depths.

maxdep Numeric vector with maximum depth.

desc.tdist Numeric vector with descent total distance, estimated from speed.

desc.mean.speed

Numeric vector with descent mean speed.

desc.angle Numeric vector with descent angle, from the surface plane.

bott.tdist Numeric vector with bottom total distance, estimated from speed.

bott.mean.speed

Numeric vector with bottom mean speed.

asc.tdist Numeric vector with ascent total distance, estimated from speed.

asc.mean.speed Numeric vector with ascent mean speed.

asc.angle Numeric vector with ascent angle, from the bottom plane.

postdive.dur Postdive duration.

postdive.tdist Numeric vector with postdive total distance, estimated from speed.

postdive.mean.speed

Numeric vector with postdive mean speed.

If depth.deriv=TRUE, 21 additional columns with the minimum, first quartile, median, mean, third
quartile, maximum, and standard deviation of the depth derivative for each phase of the dive. The
number of columns also depends on argument speed.

stampDive returns a data.frame with phase number, activity, and start and end times for each dive.

Functions

• oneDiveStats: Calculate dive statistics for a single dive

• stampDive: Stamp dives

Author(s)

Sebastian P. Luque <spluque@gmail.com>

See Also

calibrateDepth, .detPhase, TDRcalibrate-class

30 extractDive,TDR,numeric,numeric-method

Examples

Too long for checks
Continuing the Example from '?calibrateDepth':
utils::example("calibrateDepth", package="diveMove",

ask=FALSE, echo=FALSE, run.donttest=TRUE)
dcalib # the 'TDRcalibrate' that was created

tdrX <- diveStats(dcalib)
stamps <- stampDive(dcalib, ignoreZ=TRUE)
tdrX.tab <- data.frame(stamps, tdrX)
summary(tdrX.tab)

extractDive,TDR,numeric,numeric-method

Extract Dives from "TDR" or "TDRcalibrate" Objects

Description

Extract data corresponding to a particular dive(s), referred to by number.

Usage

S4 method for signature 'TDR,numeric,numeric'
extractDive(obj, diveNo, id)

S4 method for signature 'TDRcalibrate,numeric,missing'
extractDive(obj, diveNo)

Arguments

obj TDR object.

diveNo numeric vector or scalar with dive numbers to extract. Duplicates are ignored.

id numeric vector or scalar of dive numbers from where diveNo should be chosen.

Value

An object of class TDR or TDRspeed.

Methods (by class)

• obj = TDR,diveNo = numeric,id = numeric: Extract data on TDR object

• obj = TDRcalibrate,diveNo = numeric,id = missing: Extract data on TDRcalibrate object

Author(s)

Sebastian P. Luque <spluque@gmail.com>

fitMLEbouts,numeric-method 31

Examples

Too long for checks
Continuing the Example from '?calibrateDepth':
utils::example("calibrateDepth", package="diveMove",

ask=FALSE, echo=FALSE, run.donttest=TRUE)
dcalib # the 'TDRcalibrate' that was created

diveX <- extractDive(divesTDR, 9, getDAct(dcalib, "dive.id"))
plotTDR(diveX)

diveX <- extractDive(dcalib, 5:10)
plotTDR(diveX)

fitMLEbouts,numeric-method

Maximum Likelihood Model of mixtures of 2 or 3 Poisson Processes

Description

Functions to model a mixture of 2 random Poisson processes to identify bouts of behaviour. This
follows Langton et al. (1995).

Usage

S4 method for signature 'numeric'
fitMLEbouts(obj, start, optim_opts0 = NULL, optim_opts1 = NULL)

S4 method for signature 'Bouts'
fitMLEbouts(obj, start, optim_opts0 = NULL, optim_opts1 = NULL)

Arguments

obj Object of class Bouts.

start passed to mle. A row- and column-named (2,N) matrix, as returned by boutinit.

optim_opts0 named list of optional arguments passed to mle for fitting the first model with
transformed parameters.

optim_opts1 named list of optional arguments passed to mle for fitting the second model with
parameters retrieved from the first model, untransformed to original scale.

Details

Mixtures of 2 or 3 Poisson processes are supported. Even in this relatively simple case, it is very
important to provide good starting values for the parameters.

One useful strategy to get good starting parameter values is to proceed in 4 steps. First, fit a bro-
ken stick model to the log frequencies of binned data (see boutinit), to obtain estimates of 4

32 fitMLEbouts,numeric-method

parameters in a 2-process model (Sibly et al. 1990), or 6 in a 3-process model. Second, calculate
parameter(s) p from the alpha parameters obtained from the broken stick model, to get tentative
initial values as in Langton et al. (1995). Third, obtain MLE estimates for these parameters, but
using a reparameterized version of the -log L2 function. Lastly, obtain the final MLE estimates for
the 3 parameters by using the estimates from step 3, un-transformed back to their original scales,
maximizing the original parameterization of the -log L2 function.

boutinit can be used to perform step 1. Calculation of the mixing parameters p in step 2 is trivial
from these estimates. Function boutsMLEll.chooser defines a reparameterized version of the -log
L2 function given by Langton et al. (1995), so can be used for step 3. This uses a logit (see logit)
transformation of the mixing parameter p , and log transformations for both density parameters
lambda1 and lambda2 . Function boutsMLEll.chooser can be used again to define the -log L2
function corresponding to the un-transformed model for step 4.

fitMLEbouts is the function performing the main job of maximizing the -log L2 functions, and
is essentially a wrapper around mle. It only takes the -log L2 function, a list of starting values,
and the variable to be modelled, all of which are passed to mle for optimization. Additionally, any
other arguments are also passed to mle, hence great control is provided for fitting any of the -log L2
functions.

In practice, step 3 does not pose major problems using the reparameterized -log L2 function, but
it might be useful to use method “L-BFGS-B” with appropriate lower and upper bounds. Step
4 can be a bit more problematic, because the parameters are usually on very different scales and
there can be multiple minima. Therefore, it is almost always the rule to use method “L-BFGS-B”,
again bounding the parameter search, as well as passing a control list with proper parscale for
controlling the optimization. See Note below for useful constraints which can be tried.

Value

An object of class mle.

Methods (by class)

• numeric: Fit model via MLE on numeric vector.

• Bouts: Fit model via MLE on Bouts object.

Note

In the case of a mixture of 2 Poisson processes, useful values for lower bounds for the transformed
negative log likelihood reparameterization are c(-2, -5, -10). For the un-transformed parameter-
ization, useful lower bounds are rep(1e-08, 3). A useful parscale argument for the latter is c(1,
0.1, 0.01). However, I have only tested this for cases of diving behaviour in pinnipeds, so these
suggested values may not be useful in other cases.

The lambdas can be very small for some data, particularly lambda2, so the default ndeps in optim
can be so large as to push the search outside the bounds given. To avoid this problem, provide a
smaller ndeps value.

Author(s)

Sebastian P. Luque <spluque@gmail.com>

fitNLSbouts,data.frame-method 33

References

Langton, S.; Collett, D. and Sibly, R. (1995) Splitting behaviour into bouts; a maximum likelihood
approach. Behaviour 132, 9-10.

Luque, S.P. and Guinet, C. (2007) A maximum likelihood approach for identifying dive bouts im-
proves accuracy, precision, and objectivity. Behaviour, 144, 1315-1332.

Sibly, R.; Nott, H. and Fletcher, D. (1990) Splitting behaviour into bouts. Animal Behaviour 39,
63-69.

Examples

Run example to retrieve random samples for two- and three-process
Poisson mixtures with known parameters as 'Bouts' objects
('xbouts2', and 'xbouts3'), as well as starting values from
broken-stick model ('startval2' and 'startval3')
utils::example("boutinit", package="diveMove", ask=FALSE)

2-process
opts0 <- list(method="L-BFGS-B", lower=c(-2, -5, -10))
opts1 <- list(method="L-BFGS-B", lower=c(1e-1, 1e-3, 1e-6))
bouts2.fit <- fitMLEbouts(xbouts2, start=startval2, optim_opts0=opts0,

optim_opts1=opts1)
plotBouts(bouts2.fit, xbouts2)

3-process
opts0 <- list(method="L-BFGS-B", lower=c(-5, -5, -6, -8, -12))
We know 0 < p < 1, and can provide bounds for lambdas within an
order of magnitude for a rough box constraint.
lo <- c(9e-2, 9e-2, 2e-3, 1e-3, 1e-5)
hi <- c(9e-1, 9.9e-1, 2e-1, 9e-2, 5e-3)
Important to set the step size to avoid running below zero for
the last lambda.
ndeps <- c(1e-3, 1e-3, 1e-3, 1e-3, 1e-5)
opts1 <- list(method="L-BFGS-B", lower=lo, upper=hi,

control=list(ndeps=ndeps))
bout3.fit <- fitMLEbouts(xbouts3, start=startval3, optim_opts0=opts0,

optim_opts1=opts1)
bec(bout3.fit)
plotBoutsCDF(bout3.fit, xbouts3)

fitNLSbouts,data.frame-method

Fit mixture of Poisson Processes to Log Frequency data via Non-linear
Least Squares regression

Description

Methods for modelling a mixture of 2 or 3 random Poisson processes to histogram-like data of log
frequency vs interval mid points. This follows Sibly et al. (1990) method.

34 fitNLSbouts,data.frame-method

Usage

S4 method for signature 'data.frame'
fitNLSbouts(obj, start, maxiter, ...)

S4 method for signature 'Bouts'
fitNLSbouts(obj, start, maxiter, ...)

Arguments

obj Object of class Bouts, or data.frame with named components lnfreq (log fre-
quencies) and corresponding x (mid points of histogram bins).

start, maxiter Arguments passed to nls.

... Optional arguments passed to nls.

Value

nls object resulting from fitting this model to data.

Methods (by class)

• data.frame: Fit NLS model on data.frame

• Bouts: Fit NLS model on Bouts object

Author(s)

Sebastian P. Luque <spluque@gmail.com>

References

Sibly, R.; Nott, H. and Fletcher, D. (1990) Splitting behaviour into bouts Animal Behaviour 39,
63-69.

See Also

fitMLEbouts for a better approach; boutfreqs; boutinit

Examples

Run example to retrieve random samples for two- and three-process
Poisson mixtures with known parameters as 'Bouts' objects
('xbouts2', and 'xbouts3'), as well as starting values from
broken-stick model ('startval2' and 'startval3')
utils::example("boutinit", package="diveMove", ask=FALSE)

2-process
bout2.fit <- fitNLSbouts(xbouts2, start=startval2, maxiter=500)
summary(bout2.fit)
bec(bout2.fit)

labelBouts,numeric-method 35

3-process
The problem requires using bound constraints, which is available
via the 'port' algorithm
l_bnds <- c(100, 1e-3, 100, 1e-3, 100, 1e-6)
u_bnds <- c(5e4, 1, 5e4, 1, 5e4, 1)
bout3.fit <- fitNLSbouts(xbouts3, start=startval3, maxiter=500,

lower=l_bnds, upper=u_bnds, algorithm="port")
plotBouts(bout3.fit, xbouts3)

labelBouts,numeric-method

Label each vector element or matrix row with bout membership num-
ber

Description

Identify which bout an observation belongs to.

Usage

S4 method for signature 'numeric'
labelBouts(obj, becs, bec.method = c("standard", "seq.diff"))

S4 method for signature 'Bouts'
labelBouts(obj, becs, bec.method = c("standard", "seq.diff"))

Arguments

obj Object of class Bouts object, or numeric vector or matrix with independent data
modelled as a Poisson process mixture.

becs numeric vector or matrix with values for the bout ending criterion which should
be compared against the values in x for identifying the bouts. It needs to have
the same dimensions as x to allow for situations where bec is within x.

bec.method character: method used for calculating the frequencies: “standard” simply uses
x, while “seq.diff” uses the sequential differences method.

Value

labelBouts returns a numeric vector sequentially labelling each row or element of x , which asso-
ciates it with a particular bout. unLogit and logit return a numeric vector with the (un)transformed
arguments.

Methods (by class)

• numeric: Label data on vector or matrix objects.

• Bouts: Label data on Bouts object

36 plotBouts,nls,data.frame-method

Examples

Run example to retrieve random samples for two- and three-process
Poisson mixtures with known parameters as 'Bouts' objects
('xbouts2', and 'xbouts3'), as well as starting values from
broken-stick model ('startval2' and 'startval3')
utils::example("boutinit", package="diveMove", ask=FALSE)

2-process
opts0 <- list(method="L-BFGS-B", lower=c(-2, -5, -10))
opts1 <- list(method="L-BFGS-B", lower=c(1e-1, 1e-3, 1e-6))
bouts2.fit <- fitMLEbouts(xbouts2, start=startval2, optim_opts0=opts0,

optim_opts1=opts1)
bec2 <- bec(bouts2.fit)
labelBouts() expects its second argument to have the same
dimensions as the data
labelBouts(xbouts2, becs=rep(bec2, length(xbouts2@x)))

plotBouts,nls,data.frame-method

Plot fitted Poisson mixture model and data

Description

Plot fitted Poisson mixture model and data

Usage

S4 method for signature 'nls,data.frame'
plotBouts(fit, obj, bec.lty = 2, ...)

S4 method for signature 'nls,Bouts'
plotBouts(fit, obj, bec.lty = 2, ...)

S4 method for signature 'mle,numeric'
plotBouts(fit, obj, xlab = "x", ylab = "Log Frequency", bec.lty = 2, ...)

S4 method for signature 'mle,Bouts'
plotBouts(fit, obj, xlab = "x", ylab = "Log Frequency", bec.lty = 2, ...)

Arguments

fit Object of class nls or mle.

obj Object of class Bouts, data.frame with columns named lnfreq and x (when
fit -> nls object, or numeric vector (valid when fit -> mle object.

bec.lty Line type specification for drawing the BEC reference line.

... Arguments passed to plot.default.

xlab, ylab Label for x and y axis, respectively.

plotBoutsCDF,nls,numeric-method 37

Methods (by class)

• fit = nls,obj = data.frame: Plot fitted nls model on data.frame object

• fit = nls,obj = Bouts: Plot fitted nls model on Bouts object

• fit = mle,obj = numeric: Plot fitted mle model on numeric object

• fit = mle,obj = Bouts: Plot fitted mle model on Bouts object

Author(s)

Sebastian P. Luque <spluque@gmail.com>

See Also

boutfreqs, fitNLSbouts, fitMLEbouts

plotBoutsCDF,nls,numeric-method

Plot empirical and deterministic cumulative frequency distribution
Poisson mixture data and model

Description

Plot empirical and deterministic cumulative frequency distribution Poisson mixture data and model

Usage

S4 method for signature 'nls,numeric'
plotBoutsCDF(fit, obj, xlim, draw.bec = FALSE, bec.lty = 2, ...)

S4 method for signature 'nls,Bouts'
plotBoutsCDF(fit, obj, xlim, draw.bec = FALSE, bec.lty = 2, ...)

S4 method for signature 'mle,numeric'
plotBoutsCDF(fit, obj, xlim, draw.bec = FALSE, bec.lty = 2, ...)

S4 method for signature 'mle,Bouts'
plotBoutsCDF(fit, obj, xlim, draw.bec = FALSE, bec.lty = 2, ...)

Arguments

fit Object of class nls or mle.

obj Object of class Bouts.

xlim 2-length vector with limits for the x axis. If omitted, a sensible default is calcu-
lated.

draw.bec logical; whether to draw the BECs

bec.lty Line type specification for drawing the BEC reference line.

... Arguments passed to plot.default.

38 plotDiveModel,diveModel,missing-method

Methods (by class)

• fit = nls,obj = numeric: Plot (E)CDF on nls fit object and numeric vector

• fit = nls,obj = Bouts: Plot (E)CDF on nls fit object and Bouts object

• fit = mle,obj = numeric: Plot (E)CDF on numeric vector

• fit = mle,obj = Bouts: Plot (E)CDF on mle fit object

Author(s)

Sebastian P. Luque <spluque@gmail.com>

plotDiveModel,diveModel,missing-method

Methods for plotting models of dive phases

Description

All methods produce a double panel plot. The top panel shows the depth against time, the cubic
spline smoother, the identified descent and ascent phases (which form the basis for identifying the
rest of the dive phases), while the bottom panel shows the first derivative of the smooth trace.

Usage

S4 method for signature 'diveModel,missing'
plotDiveModel(x, diveNo)

S4 method for signature 'TDRcalibrate,missing'
plotDiveModel(x, diveNo)

S4 method for signature 'numeric,numeric'
plotDiveModel(
x,
y,
times.s,
depths.s,
d.crit,
a.crit,
diveNo = 1,
times.deriv,
depths.deriv,
d.crit.rate,
a.crit.rate

)

plotDiveModel,diveModel,missing-method 39

Arguments

x A diveModel (diveModel,missing method), numeric vector of time step obser-
vations (numeric,numeric method), or TDRcalibrate object (TDRcalibrate,numeric
method).

diveNo integer representing the dive number selected for plotting.

y numeric vector with depth observations at each time step.

times.s numeric vector with time steps used to generate the smoothing spline (i.e. the
knots, see diveModel).

depths.s numeric vector with smoothed depth (see diveModel).

d.crit integer denoting the index where descent ends in the observed time series (see
diveModel).

a.crit integer denoting the index where ascent begins in the observed time series (see
diveModel).

times.deriv numeric vector representing the time steps where the derivative of the smoothing
spline was evaluated (see diveModel).

depths.deriv numeric vector representing the derivative of the smoothing spline evaluated at
times.deriv (see diveModel).

d.crit.rate numeric scalar: vertical rate of descent corresponding to the quantile used (see
diveModel).

a.crit.rate numeric scalar: vertical rate of ascent corresponding to the quantile used (see
diveModel).

Methods (by class)

• x = diveModel,y = missing: Given a diveModel object and (possibly) the dive number that
it corresponds to, the plot shows the model data.

• x = TDRcalibrate,y = missing: Given a TDRcalibrate object and a dive number to extract
from it, this method plots the observed data and the model. The intended use of this method
is through plotTDR when what="dive.model".

• x = numeric,y = numeric: Base method, requiring all aspects of the model to be provided.

Author(s)

Sebastian P. Luque <spluque@gmail.com>

See Also

diveModel

Examples

Too long for checks

Continuing the Example from '?calibrateDepth':
utils::example("calibrateDepth", package="diveMove",

40 plotTDR,POSIXt,numeric-method

ask=FALSE, echo=FALSE, run.donttest=TRUE)

'diveModel' method
dm <- getDiveModel(dcalib, 100)
plotDiveModel(dm, diveNo=100)

'TDRcalibrate' method
plotDiveModel(dcalib, diveNo=100)

plotTDR,POSIXt,numeric-method

Methods for plotting objects of class "TDR" and "TDRcalibrate"

Description

Main plotting method for objects of these classes. Plot and optionally set zero-offset correction
windows in TDR records, with the aid of a graphical user interface (GUI), allowing for dynamic
selection of offset and multiple time windows to perform the adjustment.

Usage

S4 method for signature 'POSIXt,numeric'
plotTDR(
x,
y,
concurVars = NULL,
xlim = NULL,
depth.lim = NULL,
ylab.depth = "depth (m)",
concurVarTitles = deparse(substitute(concurVars)),
sunrise.time = "06:00:00",
sunset.time = "18:00:00",
night.col = "gray60",
dry.time = NULL,
phase.factor = NULL

)

S4 method for signature 'TDR,missing'
plotTDR(x, y, concurVars, concurVarTitles, ...)

S4 method for signature 'TDRcalibrate,missing'
plotTDR(
x,
y,
what = c("phases", "dive.model"),
diveNo = seq(max(getDAct(x, "dive.id"))),

plotTDR,POSIXt,numeric-method 41

...
)

Arguments

x POSIXct object with date and time, TDR, or TDRcalibrate object.

y numeric vector with depth in m.

concurVars matrix with additional variables in each column to plot concurrently with depth.
For the (TDR,missing) and (TDRcalibrate,missing) methods, a character
vector naming additional variables from the concurrentData slot to plot, if
any.

xlim POSIXct or numeric vector of length 2, with lower and upper limits of time to
be plotted.

depth.lim numeric vector of length 2, with the lower and upper limits of depth to be plotted.

ylab.depth character string to label the corresponding y-axes.
concurVarTitles

character vector of titles to label each new variable given in concurVars .
sunrise.time, sunset.time

character string with time of sunrise and sunset, respectively, in 24 hr format.
This is used for shading night time.

night.col color for shading night time.

dry.time subset of time corresponding to observations considered to be dry.

phase.factor factor dividing rows into sections.

... Arguments for the (POSIXt,numeric) method. For (TDRcalibrate,missing),
these are arguments for the appropriate methods.

what character: what aspect of the TDRcalibrate to plot, which selects the method
to use for plotting.

diveNo numeric vector or scalar with dive numbers to plot.

Value

If called with the interact argument set to TRUE, returns a list (invisibly) with as many components
as sections of the record that were zero-offset corrected, each consisting of two further lists with the
same components as those returned by locator.

Methods (by class)

• x = POSIXt,y = numeric: Base method plotting numeric vector against POSIXt object

• x = TDR,y = missing: Interactive graphical display of time-depth data, with zooming and pan-
ning capabilities.

• x = TDRcalibrate,y = missing: plot selected aspects of TDRcalibrate object. Currently,
two aspects have plotting methods:
* phases (Optional arguments: concurVars, surface) Plots all dives, labelled by the activity
phase they belong to. It produces a plot consisting of one or more panels; the first panel shows
depth against time, and additional panels show other concurrent data in the object. Optional

42 plotZOC,TDR,matrix-method

argument concurVars is a character vector indicating which additional components from the
concurrentData slot to plot, if any. Optional argument surface is a logical: whether to plot
surface readings.
* dive.model Plots the dive model for the selected dive number (diveNo argument).

Author(s)

Sebastian P. Luque <spluque@gmail.com>, with many ideas from CRAN package sfsmisc.

See Also

calibrateDepth, .zoc

Examples

Too long for checks

Continuing the Example from '?calibrateDepth':
utils::example("calibrateDepth", package="diveMove",

ask=FALSE, echo=FALSE, run.donttest=TRUE)
Use interact=TRUE (default) to set an offset interactively
Plot the 'TDR' object
plotTDR(getTime(divesTDR), getDepth(divesTDR))
plotTDR(divesTDR)

Plot different aspects of the 'TDRcalibrate' object
plotTDR(dcalib)
plotTDR(dcalib, diveNo=19:25)
plotTDR(dcalib, what="dive.model", diveNo=25)
if (dev.interactive(orNone=TRUE)) {

Add surface observations and interact
plotTDR(dcalib, surface=TRUE)
Plot one dive
plotTDR(dcalib, diveNo=200)

}

plotZOC,TDR,matrix-method

Methods for visually assessing results of ZOC procedure

Description

Plots for comparing the zero-offset corrected depth from a TDRcalibrate object with the uncor-
rected data in a TDR object, or the progress in each of the filters during recursive filtering for ZOC
(calibrateDepth).

plotZOC,TDR,matrix-method 43

Usage

S4 method for signature 'TDR,matrix'
plotZOC(x, y, xlim, ylim, ylab = "Depth (m)", ...)

S4 method for signature 'TDR,TDRcalibrate'
plotZOC(x, y, xlim, ylim, ylab = "Depth (m)", ...)

Arguments

x TDR object.

y matrix with the same number of rows as there are observations in x, or a TDRcalibrate
object.

xlim POSIXct or numeric vector of length 2, with lower and upper limits of time to
be plotted. Defaults to time range of input.

ylim numeric vector of length 2 (upper, lower) with axis limits. Defaults to range of
input.

ylab character strings to label the corresponding y-axis.

... Arguments passed to legend.

Details

The TDR,matrix method produces a plot like those shown in Luque and Fried (2011).

The TDR,TDRcalibrate method overlays the corrected depth from the second argument over that
from the first.

Value

Nothing; a plot as side effect.

Methods (by class)

• x = TDR,y = matrix: This plot helps in finding appropriate parameters for diveMove:::.depthFilter,
and consists of three panels. The upper panel shows the original data, the middle panel shows
the filters, and the last panel shows the corrected data. method=“visual” in calibrateDepth.

• x = TDR,y = TDRcalibrate: This plots depth from the TDRcalibrate object over the one
from the TDR object.

Author(s)

Sebastian P. Luque <spluque@gmail.com>

References

Luque, S.P. and Fried, R. (2011) Recursive filtering for zero offset correction of diving depth time
series. PLoS ONE 6:e15850

44 readLocs

See Also

calibrateDepth, .zoc

Examples

Using the Example from '?diveStats':
Too long for checks

utils::example("diveStats", package="diveMove",
ask=FALSE, echo=FALSE, run.donttest=TRUE)

Plot filters for ZOC
Work on first phase (trip) subset, to save processing time, since
there's no drift nor shifts between trips
tdr <- divesTDR[1:15000]
Try window widths (K), quantiles (P) and bound the search (db)
K <- c(3, 360); P <- c(0.5, 0.02); db <- c(0, 5)
d.filter <- diveMove:::.depthFilter(depth=getDepth(tdr),

k=K, probs=P, depth.bounds=db,
na.rm=TRUE)

old.par <- par(no.readonly=TRUE)
plotZOC(tdr, d.filter, ylim=c(0, 6))
par(old.par)

Plot corrected and uncorrected depth, regardless of method
Look at three different scales
xlim1 <- c(getTime(divesTDR)[7100], getTime(divesTDR)[11700])
xlim2 <- c(getTime(divesTDR)[7100], getTime(divesTDR)[7400])
xlim3 <- c(getTime(divesTDR)[7100], getTime(divesTDR)[7200])
par(mar=c(3, 4, 0, 1) + 0.1, cex=1.1, las=1)
layout(seq(3))
plotZOC(divesTDR, dcalib, xlim=xlim1, ylim=c(0, 6))
plotZOC(divesTDR, dcalib, xlim=xlim2, ylim=c(0, 70))
plotZOC(divesTDR, dcalib, xlim=xlim3, ylim=c(0, 70))
par(old.par)

readLocs Read comma-delimited file with location data

Description

Read a delimited (*.csv) file with (at least) time, latitude, longitude readings.

Usage

readLocs(
locations,

readLocs 45

loc.idCol,
idCol,
dateCol,
timeCol = NULL,
dtformat = "%m/%d/%Y %H:%M:%S",
tz = "GMT",
classCol,
lonCol,
latCol,
alt.lonCol = NULL,
alt.latCol = NULL,
...

)

Arguments

locations character: a string indicating the path to the file to read, or a data.frame avail-
able in the search list. Provide the entire path if the file is not on the current
directory. This can also be a text-mode connection, as allowed in read.csv.

loc.idCol integer: column number containing location ID. If missing, a loc.id column is
generated with sequential integers as long as the input.

idCol integer: column number containing an identifier for locations belonging to dif-
ferent groups. If missing, an id column is generated with number one repeated
as many times as the input.

dateCol integer: column number containing dates, and, optionally, times.

timeCol integer: column number containing times.

dtformat character: a string specifying the format in which the date and time columns,
when pasted together, should be interpreted (see strptime) in file.

tz character: a string indicating the time zone for the date and time readings.

classCol integer: column number containing the ARGOS rating for each location.

lonCol integer: column number containing longitude readings.

latCol integer: column number containing latitude readings.

alt.lonCol integer: column number containing alternative longitude readings.

alt.latCol integer: Column number containing alternative latitude readings.

... Passed to read.csv

Details

The file must have a header row identifying each field, and all rows must be complete (i.e. have the
same number of fields). Field names need not follow any convention.

Value

A data frame.

46 rmixexp

Author(s)

Sebastian P. Luque <spluque@gmail.com>

Examples

Do example to define object zz with location of dataset
utils::example("sealLocs", package="diveMove",

ask=FALSE, echo=FALSE)
locs <- readLocs(zz, idCol=1, dateCol=2,

dtformat="%Y-%m-%d %H:%M:%S", classCol=3,
lonCol=4, latCol=5, sep=";")

summary(locs)

rmixexp Generate samples from a mixture of exponential distributions

Description

rmixexp uses a special definition for the probabilities p_i to generate random samples from a mixed
Poisson distribution with known parameters for each process. In the two-process case, p represents
the proportion of "fast" to "slow" events in the mixture. In the three-process case, p_0 represents the
proportion of "fast" to "slow" events, and p_1 represents the proportion of "slow" to "slow" *and*
"very slow" events.

Usage

rmixexp(n, p, lambdas)

Arguments

n integer output sample size.

p numeric probabilities for processes generating the output mixture sample.

lambdas numeric lambda (rate) for each process.

Value

vector of samples.

Examples

Draw samples from a mixture where the first process occurs with
p < 0.7, and the second process occurs with the remaining
probability.
p <- 0.7
lda <- c(0.05, 0.005)
(rndprocs2 <- rmixexp(1000, p, lda))

rqPlot 47

3-process
p_f <- 0.6 # fast to slow
p_svs <- 0.7 # prop of slow to (slow + very slow) procs
p_true <- c(p_f, p_svs)
lda_true <- c(0.05, 0.01, 8e-4)
(rndprocs3 <- rmixexp(1000, p_true, lda_true))

rqPlot Plot of quantile regression for speed calibrations

Description

Plot of quantile regression for assessing quality of speed calibrations

Usage

rqPlot(
rddepth,
speed,
z,
contours,
rqFit,
main = "qtRegression",
xlab = "rate of depth change (m/s)",
ylab = "speed (m/s)",
colramp = colorRampPalette(c("white", "darkblue")),
col.line = "red",
cex.pts = 1

)

Arguments

rddepth numeric vector with rate of depth change.

speed numeric vector with speed in m/s.

z list with the bivariate kernel density estimates (1st component the x points of the
mesh, 2nd the y points, and 3rd the matrix of densities).

contours list with components: pts which should be a matrix with columns named x and
y, level a number indicating the contour level the points in pts correspond to.

rqFit object of class “rq” representing a quantile regression fit of rate of depth change
on mean speed.

main character: string with title prefix to include in ouput plot.

xlab, ylab character vectors with axis labels.

colramp function taking an integer n as an argument and returning n colors.

col.line color to use for the regression line.

cex.pts numeric: value specifying the amount by which to enlarge the size of points.

48 sealLocs

Details

The dashed line in the plot represents a reference indicating a one to one relationship between speed
and rate of depth change. The other line represent the quantile regression fit.

Author(s)

Sebastian P. Luque <spluque@gmail.com>

See Also

diveStats

sealLocs Ringed and Gray Seal ARGOS Satellite Location Data

Description

Satellite locations of a gray (Stephanie) and a ringed (Ringy) seal caught and released in New York.

Format

Bzip2-compressed file. A data.frame with the following information:

id String naming the seal the data come from.

time The date and time of the location.

class The ARGOS location quality classification.

lon, lat x and y geographic coordinates of each location.

Source

WhaleNet Satellite Tracking Program http://whale.wheelock.edu.

See Also

readLocs, distSpeed.

Examples

zz <- system.file(file.path("data", "sealLocs.csv"),
package="diveMove", mustWork=TRUE)

str(read.csv(zz, sep=";"))

http://whale.wheelock.edu

TDR-accessors 49

TDR-accessors Coerce, Extractor, and Replacement methods for class "TDR" objects

Description

Basic methods for manipulating objects of class TDR.

Show Method

show signature(object="TDR"): print an informative summary of the data.

Coerce Methods

as.data.frame signature(x="TDR"): Coerce object to data.frame. This method returns a data
frame, with attributes “file” and “dtime” indicating the source file and the interval between
samples.

as.data.frame signature(x="TDRspeed"): Coerce object to data.frame. Returns an object as for
TDR objects.

as.TDRspeed signature(x="TDR"): Coerce object to TDRspeed class.

Extractor Methods

[signature(x="TDR", i="numeric", j="missing",drop="missing"): Subset a TDR object;
these objects can be subsetted on a single index i . Selects given rows from object.

getDepth signature(x = "TDR"): depth slot accessor.

getCCData signature(x="TDR", y="missing"): concurrentData slot accessor.

getCCData signature(x="TDR", y="character"): access component named y in x .

getDtime signature(x = "TDR"): sampling interval accessor.

getFileName signature(x="TDR"): source file name accessor.

getTime signature(x = "TDR"): time slot accessor.

getSpeed signature(x = "TDRspeed"): speed accessor for TDRspeed objects.

Replacement Methods

depth<- signature(x="TDR"): depth replacement.

speed<- signature(x="TDR"): speed replacement.

ccData<- signature(x="TDR"): concurrent data frame replacement.

Author(s)

Sebastian P. Luque <spluque@gmail.com>

See Also

extractDive, plotTDR.

50 TDR-class

Examples

data(divesTDR)

Retrieve the name of the source file
getFileName(divesTDR)
Retrieve concurrent temperature measurements
temp <- getCCData(divesTDR, "temperature"); head(temp)
temp <- getCCData(divesTDR); head(temp)

Coerce to a data frame
dives.df <- as.data.frame(divesTDR)
head(dives.df)

Replace speed measurements
newspeed <- getSpeed(divesTDR) + 2
speed(divesTDR) <- newspeed

TDR-class Classes "TDR" and "TDRspeed" for representing TDR information

Description

These classes store information gathered by time-depth recorders.

Details

Since the data to store in objects of these clases usually come from a file, the easiest way to construct
such objects is with the function readTDR to retrieve all the necessary information.

Functions

• TDRspeed-class: Class TDRspeed

Slots

file Object of class ‘character’, string indicating the file where the data comes from.

dtime Object of class ‘numeric’, sampling interval in seconds.

time Object of class POSIXct, time stamp for every reading.

depth Object of class ‘numeric’, depth (m) readings.

concurrentData Object of class data.frame, optional data collected concurrently.

Objects from the class

Objects can be created by calls of the form new("TDR", ...) and new("TDRspeed", ...).

‘TDR’ objects contain concurrent time and depth readings, as well as a string indicating the file
the data originates from, and a number indicating the sampling interval for these data. ‘TDRspeed’
extends ‘TDR’ objects containing additional concurrent speed readings.

TDRcalibrate-accessors 51

Author(s)

Sebastian P. Luque <spluque@gmail.com>

See Also

readTDR, TDRcalibrate.

TDRcalibrate-accessors

Methods to Show and Extract Basic Information from "TDRcalibrate"
Objects

Description

Show and extract information from TDRcalibrate objects.

Usage

S4 method for signature 'TDRcalibrate,missing'
getDAct(x)
S4 method for signature 'TDRcalibrate,character'
getDAct(x, y)
S4 method for signature 'TDRcalibrate,missing'
getDPhaseLab(x)
S4 method for signature 'TDRcalibrate,numeric'
getDPhaseLab(x, diveNo)
S4 method for signature 'TDRcalibrate,missing'
getDiveModel(x)
S4 method for signature 'TDRcalibrate,numeric'
getDiveModel(x, diveNo)
S4 method for signature 'diveModel'
getDiveDeriv(x, phase=c("all", "descent", "bottom", "ascent"))
S4 method for signature 'TDRcalibrate'
getDiveDeriv(x, diveNo, phase=c("all", "descent", "bottom", "ascent"))
S4 method for signature 'TDRcalibrate,missing'
getGAct(x)
S4 method for signature 'TDRcalibrate,character'
getGAct(x, y)
S4 method for signature 'TDRcalibrate'
getSpeedCoef(x)
S4 method for signature 'TDRcalibrate'
getTDR(x)

52 TDRcalibrate-accessors

Arguments

x TDRcalibrate object.

diveNo numeric vector with dive numbers to extract information from.

y string; “dive.id”, “dive.activity”, or “postdive.id” in the case of getDAct, to ex-
tract the numeric dive ID, the factor identifying activity phases (with underwater
and diving levels possibly represented), or the numeric postdive ID, respectively.
In the case of getGAct it should be one of “phase.id”, “activity”, “begin”, or
“end”, to extract the numeric phase ID for each observation, a factor indicating
what major activity the observation corresponds to (where diving and underwa-
ter levels are not represented), or the beginning and end times of each phase in
the record, respectively.

phase character vector indicating phase of the dive for which to extract the derivative.

Value

The extractor methods return an object of the same class as elements of the slot they extracted.

Show Methods

show signature(object="TDRcalibrate"): prints an informative summary of the data.

show signature(object="diveModel"): prints an informative summary of a dive model.

Extractor Methods

getDAct signature(x="TDRcalibrate", y="missing"): this accesses the dive.activity slot
of TDRcalibrate objects. Thus, it extracts a data frame with vectors identifying all readings
to a particular dive and postdive number, and a factor identifying all readings to a particular
activity.

getDAct signature(x="TDRcalibrate", y="character"): as the method for missing y, but se-
lects a particular vector to extract. See TDRcalibrate for possible strings.

getDPhaseLab signature(x="TDRcalibrate",diveNo="missing"): extracts a factor identify-
ing all readings to a particular dive phase. This accesses the dive.phases slot of TDRcalibrate
objects, which is a factor.

getDPhaseLab signature(x="TDRcalibrate",diveNo="numeric"): as the method for missing
y, but selects data from a particular dive number to extract.

getDiveModel signature(x="TDRcalibrate",diveNo="missing"): extracts a list with all dive
phase models. This accesses the dive.models slot of TDRcalibrate objects.

getDiveModel signature(x="TDRcalibrate",diveNo="numeric"): as the method for missing
diveNo, but selects data from a particular dive number to extract.

getDiveDeriv signature(x="TDRcalibrate"): extracts the derivative (list) of the dive model
(smoothing spline) from the dive.models slot of TDRcalibrate objects for one or all phases
of a dive.

getDiveDeriv signature(x="diveModel"): as the method for TDRcalibrate, but selects data
from one or all phases of a dive.

TDRcalibrate-accessors 53

getGAct signature(x="TDRcalibrate", y="missing"): this accesses the gross.activity slot
of TDRcalibrate objects, which is a named list. It extracts elements that divide the data into
major wet and dry activities.

getGAct signature(x="TDRcalibrate", y="character"): as the method for missing y, but ex-
tracts particular elements.

getTDR signature(x="TDRcalibrate"): this accesses the tdr slot of TDRcalibrate objects,
which is a TDR object.

getSpeedCoef signature(x="TDRcalibrate"): this accesses the speed.calib.coefs slot of
TDRcalibrate objects; the speed calibration coefficients.

Author(s)

Sebastian P. Luque <spluque@gmail.com>

See Also

diveModel, plotDiveModel, plotTDR.

Examples

Too long for checks
Continuing the Example from '?calibrateDepth':
utils::example("calibrateDepth", package="diveMove",

ask=FALSE, echo=FALSE, , run.donttest=TRUE)
dcalib # the 'TDRcalibrate' that was created

Beginning times of each successive phase in record
getGAct(dcalib, "begin")

Factor of dive IDs
dids <- getDAct(dcalib, "dive.id")
table(dids[dids > 0]) # samples per dive

Factor of dive phases for given dive
getDPhaseLab(dcalib, 19)
Full dive model
(dm <- getDiveModel(dcalib, 19))
str(dm)

Derivatives
getDiveDeriv(dcalib, diveNo=19)
(derivs.desc <- getDiveDeriv(dcalib, diveNo=19, phase="descent"))
(derivs.bott <- getDiveDeriv(dcalib, diveNo=19, phase="bottom"))
(derivs.asc <- getDiveDeriv(dcalib, diveNo=19, phase="ascent"))
if (require(lattice)) {

fl <- c("descent", "bottom", "ascent")
bwplot(~ derivs.desc$y + derivs.bott$y + derivs.asc$y,

outer=TRUE, allow.multiple=TRUE, layout=c(1, 3),
xlab=expression(paste("Vertical rate (", m %.% s^-1, ")")),
strip=strip.custom(factor.levels=fl))

}

54 TDRcalibrate-class

TDRcalibrate-class Class "TDRcalibrate" for dive analysis

Description

This class holds information produced at various stages of dive analysis. Methods are provided for
extracting data from each slot.

Details

This is perhaps the most important class in diveMove, as it holds all the information necessary for
calculating requested summaries for a TDR.

Slots

call Object of class call. The matched call to the function that created the object.

tdr Object of class TDR. This slot contains the time, zero-offset corrected depth, and possibly a data
frame. If the object is also of class "TDRspeed", then the data frame might contain calibrated
or uncalibrated speed. See readTDR and the accessor function getTDR for this slot.

gross.activity Object of class ‘list’. This slot holds a list of the form returned by .detPhase,
composed of 4 elements. It contains a vector (named phase.id) numbering each major activ-
ity phase found in the record, a factor (named activity) labelling each row as being dry, wet,
or trivial wet activity. These two elements are as long as there are rows in tdr. This list also
contains two more vectors, named begin and end: one with the beginning time of each phase,
and another with the ending time; both represented as POSIXct objects. See .detPhase.

dive.activity Object of class data.frame. This slot contains a data.frame of the form re-
turned by .detDive, with as many rows as those in tdr, consisting of three vectors named:
dive.id, which is an integer vector, sequentially numbering each dive (rows that are not part
of a dive are labelled 0), dive.activity is a factor which completes that in activity above,
further identifying rows in the record belonging to a dive. The third vector in dive.activity
is an integer vector sequentially numbering each postdive interval (all rows that belong to a
dive are labelled 0). See .detDive, and getDAct to access all or any one of these vectors.

dive.phases Object of class ‘factor’. This slot is a factor that labels each row in the record as
belonging to a particular phase of a dive. It has the same form as the “phase.labels” component
of the list returned by .labDivePhase.

dive.models Object of class ‘list’. This slot contains the details of the process of dive phase
identification for each dive. It has the same form as the dive.models component of the list
returned by .labDivePhase. It has as many components as there are dives in the TDR object,
each of them of class diveModel.

dry.thr Object of class ‘numeric’. The temporal criteria used for detecting dry periods that should
be considered as wet.

timeBudget,TDRcalibrate,logical-method 55

wet.thr Object of class ‘numeric’ the temporal criteria used for detecting periods wet that should
not be considered as foraging time.

dive.thr Object of class ‘numeric’. The temporal criteria used for detecting periods wet that
should not be considered as foraging time.

speed.calib.coefs Object of class ‘numeric’. The intercept and slope derived from the speed
calibration procedure. Defaults to c(0, 1) meaning uncalibrated speeds.

Objects from the Class

Objects can be created by calls of the form new("TDRcalibrate",...{}). The objects of this class
contain information necessary to divide the record into sections (e.g. dry/water), dive/surface, and
different sections within dives. They also contain the parameters used to calibrate speed and criteria
to divide the record into phases.

Author(s)

Sebastian P. Luque <spluque@gmail.com>

See Also

TDR for links to other classes in the package. TDRcalibrate-methods for the various methods
available.

timeBudget,TDRcalibrate,logical-method

Describe the Time Budget of Major Activities from "TDRcalibrate"
object.

Description

Summarize the major activities recognized into a time budget.

Usage

S4 method for signature 'TDRcalibrate,logical'
timeBudget(obj, ignoreZ)

Arguments

obj TDRcalibrate object.

ignoreZ logical: whether to ignore trivial aquatic periods.

Details

Ignored trivial aquatic periods are collapsed into the enclosing dry period.

56 timeBudget,TDRcalibrate,logical-method

Value

A data.frame with components:

phaseno A numeric vector numbering each period of activity.

activity A factor labelling the period with the corresponding activity.

beg, end POSIXct objects indicating the beginning and end of each period.

Methods (by class)

• obj = TDRcalibrate,ignoreZ = logical: Base method for computing time budget from
TDRcalibrate object

Author(s)

Sebastian P. Luque <spluque@gmail.com>

See Also

calibrateDepth

Examples

Too long for checks
Continuing the Example from '?calibrateDepth':
utils::example("calibrateDepth", package="diveMove",

ask=FALSE, echo=FALSE, run.donttest=TRUE)
dcalib # the 'TDRcalibrate' that was created

timeBudget(dcalib, TRUE)

Index

∗ Dive analysis
diveMove-package, 3

∗ arith
diveStats, 28
rqPlot, 47

∗ array
.runquantile, 4

∗ classes
Bouts-class, 13
diveModel-class, 25
TDR-class, 50
TDRcalibrate-class, 54

∗ datasets
dives, 27
sealLocs, 48

∗ hplot
rqPlot, 47

∗ iplot
plotTDR,POSIXt,numeric-method, 40
plotZOC,TDR,matrix-method, 42

∗ iteration
austFilter, 7

∗ manip
austFilter, 7
bec,nls-method, 10
calibrateDepth, 15
calibrateSpeed, 20
createTDR, 22
distSpeed, 24
fitMLEbouts,numeric-method, 31
fitNLSbouts,data.frame-method, 33
labelBouts,numeric-method, 35
readLocs, 44
rqPlot, 47

∗ math
calibrateDepth, 15
calibrateSpeed, 20
distSpeed, 24
diveStats, 28

∗ methods
extractDive,TDR,numeric,numeric-method,

30
fitMLEbouts,numeric-method, 31
labelBouts,numeric-method, 35
plotBouts,nls,data.frame-method,

36
plotBoutsCDF,nls,numeric-method,

37
plotDiveModel,diveModel,missing-method,

38
plotTDR,POSIXt,numeric-method, 40
plotZOC,TDR,matrix-method, 42
TDR-accessors, 49
TDRcalibrate-accessors, 51
timeBudget,TDRcalibrate,logical-method,

55
∗ models

bec,nls-method, 10
fitMLEbouts,numeric-method, 31
fitNLSbouts,data.frame-method, 33
labelBouts,numeric-method, 35
plotBouts,nls,data.frame-method,

36
plotBoutsCDF,nls,numeric-method,

37
∗ moving maximum

.runquantile, 4
∗ moving max

.runquantile, 4
∗ moving minimum

.runquantile, 4
∗ moving min

.runquantile, 4
∗ moving percentile

.runquantile, 4
∗ moving quantile

.runquantile, 4
∗ moving window

57

58 INDEX

.runquantile, 4
∗ package

diveMove-package, 3
∗ plot

plotBouts,nls,data.frame-method,
36

plotBoutsCDF,nls,numeric-method,
37

∗ rolling maximum
.runquantile, 4

∗ rolling max
.runquantile, 4

∗ rolling minimum
.runquantile, 4

∗ rolling min
.runquantile, 4

∗ rolling percentile
.runquantile, 4

∗ rolling quantile
.runquantile, 4

∗ rolling window
.runquantile, 4

∗ running maximum
.runquantile, 4

∗ running max
.runquantile, 4

∗ running minimum
.runquantile, 4

∗ running min
.runquantile, 4

∗ running percentile
.runquantile, 4

∗ running quantile
.runquantile, 4

∗ running window
.runquantile, 4

∗ smooth
.runquantile, 4

∗ time depth recorder
diveMove-package, 3

∗ ts
.runquantile, 4

∗ utilities
.runquantile, 4

.cutDive, 26

.depthFilter, 19

.detDive, 19, 54

.detPhase, 19, 29, 54

.labDivePhase, 54

.runquantile, 4

.zoc, 19, 42, 44
[,TDR,numeric,missing,missing-method

(TDR-accessors), 49

apply, 4, 5
as.data.frame,TDR-method

(TDR-accessors), 49
as.TDRspeed (TDR-accessors), 49
as.TDRspeed,TDR-method (TDR-accessors),

49
austFilter, 7

bec (bec,nls-method), 10
bec,mle-method (bec,nls-method), 10
bec,nls-method, 10
boutfreqs, 11, 13, 34, 37
boutinit, 31, 32, 34
boutinit (boutinit,data.frame-method),

12
boutinit,Bouts-method

(boutinit,data.frame-method),
12

boutinit,data.frame-method, 12
Bouts, 12, 15, 31, 32, 34–38
Bouts (Bouts-class), 13
Bouts-class, 13
boutsCDF, 14
boutsMLEll.chooser, 32
boutsNLSll (boutsNLSll,Bouts-method), 14
boutsNLSll,Bouts-method, 14
boutsNLSll,numeric-method

(boutsNLSll,Bouts-method), 14

calibrateDepth, 3, 15, 16, 20, 26, 29, 42–44,
56

calibrateSpeed, 3, 16, 20, 20
call, 54
ccData<- (TDR-accessors), 49
ccData<-,TDR,data.frame-method

(TDR-accessors), 49
character, 41
coerce,TDR,data.frame-method

(TDR-accessors), 49
coerce,TDR,TDRspeed-method

(TDR-accessors), 49
createTDR, 22

INDEX 59

data.frame, 12, 13, 22, 24, 28, 29, 34, 36, 45,
48, 50, 54, 56

depth<- (TDR-accessors), 49
depth<-,TDR,numeric-method

(TDR-accessors), 49
dim, 5
distSpeed, 8, 9, 24, 48
diveModel, 18, 19, 39, 53, 54
diveModel (diveModel-class), 25
diveModel-class, 25
diveMove, 23
diveMove (diveMove-package), 3
diveMove-package, 3
dives, 27
diveStats, 27, 28, 48
divesTDR (dives), 27
divesTDRzoc (dives), 27

embed, 4, 5
extractDive, 49
extractDive

(extractDive,TDR,numeric,numeric-method),
30

extractDive,TDR,numeric,numeric-method,
30

extractDive,TDRcalibrate,numeric,missing-method
(extractDive,TDR,numeric,numeric-method),
30

fitMLEbouts, 37
fitMLEbouts

(fitMLEbouts,numeric-method),
31

fitMLEbouts,Bouts-method
(fitMLEbouts,numeric-method),
31

fitMLEbouts,numeric-method, 31
fitNLSbouts, 37
fitNLSbouts

(fitNLSbouts,data.frame-method),
33

fitNLSbouts,Bouts-method
(fitNLSbouts,data.frame-method),
33

fitNLSbouts,data.frame-method, 33

getCCData (TDR-accessors), 49
getCCData,TDR,character-method

(TDR-accessors), 49

getCCData,TDR,missing-method
(TDR-accessors), 49

getDAct, 54
getDAct (TDRcalibrate-accessors), 51
getDAct,TDRcalibrate,character-method

(TDRcalibrate-accessors), 51
getDAct,TDRcalibrate,missing-method

(TDRcalibrate-accessors), 51
getDepth (TDR-accessors), 49
getDepth,TDR-method (TDR-accessors), 49
getDiveDeriv, 26
getDiveDeriv (TDRcalibrate-accessors),

51
getDiveDeriv,diveModel-method

(TDRcalibrate-accessors), 51
getDiveDeriv,TDRcalibrate-method

(TDRcalibrate-accessors), 51
getDiveModel (TDRcalibrate-accessors),

51
getDiveModel,TDRcalibrate,missing-method

(TDRcalibrate-accessors), 51
getDiveModel,TDRcalibrate,numeric-method

(TDRcalibrate-accessors), 51
getDPhaseLab (TDRcalibrate-accessors),

51
getDPhaseLab,TDRcalibrate,missing-method

(TDRcalibrate-accessors), 51
getDPhaseLab,TDRcalibrate,numeric-method

(TDRcalibrate-accessors), 51
getDtime (TDR-accessors), 49
getDtime,TDR-method (TDR-accessors), 49
getFileName (TDR-accessors), 49
getFileName,TDR-method (TDR-accessors),

49
getGAct (TDRcalibrate-accessors), 51
getGAct,TDRcalibrate,character-method

(TDRcalibrate-accessors), 51
getGAct,TDRcalibrate,missing-method

(TDRcalibrate-accessors), 51
getSpeed (TDR-accessors), 49
getSpeed,TDRspeed-method

(TDR-accessors), 49
getSpeedCoef (TDRcalibrate-accessors),

51
getSpeedCoef,TDRcalibrate-method

(TDRcalibrate-accessors), 51
getTDR, 54
getTDR (TDRcalibrate-accessors), 51

60 INDEX

getTDR,TDRcalibrate-method
(TDRcalibrate-accessors), 51

getTime (TDR-accessors), 49
getTime,TDR-method (TDR-accessors), 49
grpSpeedFilter (austFilter), 7

labelBouts (labelBouts,numeric-method),
35

labelBouts,Bouts-method
(labelBouts,numeric-method), 35

labelBouts,numeric-method, 35
legend, 43
length, 5
locator, 41
logit, 32

mle, 31, 32, 38

nls, 34, 38
numeric, 39

oneDiveStats (diveStats), 28
optim, 32

plot, 12
plot.default, 36, 37
plotBouts

(plotBouts,nls,data.frame-method),
36

plotBouts,mle,Bouts-method
(plotBouts,nls,data.frame-method),
36

plotBouts,mle,numeric-method
(plotBouts,nls,data.frame-method),
36

plotBouts,nls,Bouts-method
(plotBouts,nls,data.frame-method),
36

plotBouts,nls,data.frame-method, 36
plotBoutsCDF

(plotBoutsCDF,nls,numeric-method),
37

plotBoutsCDF,mle,Bouts-method
(plotBoutsCDF,nls,numeric-method),
37

plotBoutsCDF,mle,numeric-method
(plotBoutsCDF,nls,numeric-method),
37

plotBoutsCDF,nls,Bouts-method
(plotBoutsCDF,nls,numeric-method),
37

plotBoutsCDF,nls,numeric-method, 37
plotDiveModel, 26, 53
plotDiveModel

(plotDiveModel,diveModel,missing-method),
38

plotDiveModel,diveModel,missing-method,
38

plotDiveModel,numeric,numeric-method
(plotDiveModel,diveModel,missing-method),
38

plotDiveModel,TDRcalibrate,missing-method
(plotDiveModel,diveModel,missing-method),
38

plotTDR, 17, 19, 39, 49, 53
plotTDR

(plotTDR,POSIXt,numeric-method),
40

plotTDR,POSIXt,numeric-method, 40
plotTDR,TDR,missing-method

(plotTDR,POSIXt,numeric-method),
40

plotTDR,TDRcalibrate,missing-method
(plotTDR,POSIXt,numeric-method),
40

plotZOC, 19
plotZOC (plotZOC,TDR,matrix-method), 42
plotZOC,TDR,matrix-method, 42
plotZOC,TDR,TDRcalibrate-method

(plotZOC,TDR,matrix-method), 42
POSIXct, 50, 54, 56
predict.smooth.spline, 25

quantile, 4, 5

read.csv, 22, 23, 45
readLocs, 44, 48
readTDR, 27, 50, 51, 54
readTDR (createTDR), 22
rmixexp, 46
rmsDistFilter (austFilter), 7
rq, 20
rqPlot, 21, 47

sealLocs, 48
show,diveModel-method

(TDRcalibrate-accessors), 51

INDEX 61

show,TDR-method (TDR-accessors), 49
show,TDRcalibrate-method

(TDRcalibrate-accessors), 51
smooth.spline, 16, 18, 19, 25
speed<- (TDR-accessors), 49
speed<-,TDRspeed,numeric-method

(TDR-accessors), 49
stampDive, 3
stampDive (diveStats), 28
strptime, 23, 45
subset.data.frame, 17

TDR, 16, 17, 19, 20, 23, 25, 27, 30, 41, 42, 49,
53–55

TDR (TDR-class), 50
TDR-accessors, 49
TDR-class, 50
TDR-methods (TDR-accessors), 49
TDRcalibrate, 15, 16, 19–21, 39, 41, 42,

51–53, 55
TDRcalibrate (TDRcalibrate-class), 54
TDRcalibrate-accessors, 51
TDRcalibrate-class, 54
TDRcalibrate-methods

(TDRcalibrate-accessors), 51
TDRspeed, 23, 30, 49
TDRspeed (TDR-class), 50
TDRspeed-class (TDR-class), 50
timeBudget, 3
timeBudget

(timeBudget,TDRcalibrate,logical-method),
55

timeBudget,TDRcalibrate,logical-method,
55

unireg, 18, 19

	diveMove-package
	.runquantile
	austFilter
	bec,nls-method
	boutfreqs
	boutinit,data.frame-method
	Bouts-class
	boutsCDF
	boutsNLSll,Bouts-method
	calibrateDepth
	calibrateSpeed
	createTDR
	distSpeed
	diveModel-class
	dives
	diveStats
	extractDive,TDR,numeric,numeric-method
	fitMLEbouts,numeric-method
	fitNLSbouts,data.frame-method
	labelBouts,numeric-method
	plotBouts,nls,data.frame-method
	plotBoutsCDF,nls,numeric-method
	plotDiveModel,diveModel,missing-method
	plotTDR,POSIXt,numeric-method
	plotZOC,TDR,matrix-method
	readLocs
	rmixexp
	rqPlot
	sealLocs
	TDR-accessors
	TDR-class
	TDRcalibrate-accessors
	TDRcalibrate-class
	timeBudget,TDRcalibrate,logical-method
	Index

