
Package: telemetar (via r-universe)

September 3, 2024

Title Archetypes for Targets and Fish Telemetry

Version 0.0.0.9000

Description What the package does (one paragraph).

License MIT + file LICENSE

Imports data.table, qs, rvdat, tarchetypes, targets (>= 1.4.0), utils

Suggests curl, testthat (>= 3.0.0)

Remotes mhpob/rvdat

Config/testthat/edition 3

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.1

Repository https://ocean-tracking-network.r-universe.dev

RemoteUrl https://github.com/mhpob/telemetar

RemoteRef HEAD

RemoteSha 899eb2bd415da56b26076fb95b02346d0e40b11a

Contents

tar_vdat_read . 2
tar_vue_csvs . 4

Index 7

1

2 tar_vdat_read

tar_vdat_read Dynamic branching over VDAT files

Description

Dynamic branching over VDAT files

Usage

tar_vdat_read(
name,
vdat_dirs,
csv_outdir,
batch_size = 10,
batches = NULL,
format = c("file", "file_fast", "url", "aws_file"),
repository = targets::tar_option_get("repository"),
iteration = targets::tar_option_get("iteration"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
cue = targets::tar_option_get("cue")

)

Arguments

name Symbol, name of the target. A target name must be a valid name for a symbol in
R, and it must not start with a dot. Subsequent targets can refer to this name sym-
bolically to induce a dependency relationship: e.g. tar_target(downstream_target,
f(upstream_target)) is a target named downstream_target which depends
on a target upstream_target and a function f(). In addition, a target’s name
determines its random number generator seed. In this way, each target runs with
a reproducible seed so someone else running the same pipeline should get the
same results, and no two targets in the same pipeline share the same seed. (Even
dynamic branches have different names and thus different seeds.) You can re-
cover the seed of a completed target with tar_meta(your_target, seed) and
run tar_seed_set() on the result to locally recreate the target’s initial RNG
state.

vdat_dirs Nonempty character vector of known existing directories of VDAT files to track
for changes.

csv_outdir file path to the output directory

batch_size Positive integer of length 1, number of files to partition into a batch. The default
is ten files per batch.

tar_vdat_read 3

batches Positive integer of length 1, number of batches to partition the files. The default
is one file per batch (maximum number of batches) which is simplest to handle
but could cause a lot of overhead and consume a lot of computing resources.
Consider reducing the number of batches below the number of files for heavy
workloads.

format Character, either "file", "file_fast", or "url". See the format argument of
targets::tar_target() for details.

repository Character of length 1, remote repository for target storage. Choices:

• "local": file system of the local machine.
• "aws": Amazon Web Services (AWS) S3 bucket. Can be configured with a

non-AWS S3 bucket using the endpoint argument of tar_resources_aws(),
but versioning capabilities may be lost in doing so. See the cloud stor-
age section of https://books.ropensci.org/targets/data.html for
details for instructions.

• "gcp": Google Cloud Platform storage bucket. See the cloud storage sec-
tion of https://books.ropensci.org/targets/data.html for details for
instructions.

Note: if repository is not "local" and format is "file" then the target
should create a single output file. That output file is uploaded to the cloud and
tracked for changes where it exists in the cloud. The local file is deleted after
the target runs.

iteration Character, iteration method. Must be a method supported by the iteration
argument of targets::tar_target(). The iteration method for the upstream
target is always "list" in order to support batching.

error Character of length 1, what to do if the target stops and throws an error. Options:

• "stop": the whole pipeline stops and throws an error.
• "continue": the whole pipeline keeps going.
• "abridge": any currently running targets keep running, but no new tar-

gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

• "null": The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

memory Character of length 1, memory strategy. If "persistent", the target stays in
memory until the end of the pipeline (unless storage is "worker", in which case
targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient", the target gets unloaded
after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file" with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent" means
it remains until the end of the pipeline and is then deleted, and "transient"
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection

Logical, whether to run base::gc() just before the target runs.

https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html

4 tar_vue_csvs

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed first
when multiple competing targets are ready simultaneously. Targets with priori-
ties closer to 1 get dispatched earlier (and polled earlier in tar_make_future()).

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date. Only applies to the downstream target. The upstream
target always runs.

Examples

example code

tar_vue_csvs Dynamic branching over VUE/VDAT-exported CSV detection files.

Description

Dynamic branching over VUE/VDAT-exported CSV detection files.

Usage

tar_vue_csvs(
name,
csv_dirs,
pattern = "^[VH]R.*\\.csv$",
batch_size = 10,
format = c("file", "file_fast", "url", "aws_file"),
repository = targets::tar_option_get("repository"),
iteration = targets::tar_option_get("iteration"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
cue = targets::tar_option_get("cue")

)

Arguments

name Symbol, name of the target. A target name must be a valid name for a symbol in
R, and it must not start with a dot. Subsequent targets can refer to this name sym-
bolically to induce a dependency relationship: e.g. tar_target(downstream_target,
f(upstream_target)) is a target named downstream_target which depends
on a target upstream_target and a function f(). In addition, a target’s name

tar_vue_csvs 5

determines its random number generator seed. In this way, each target runs with
a reproducible seed so someone else running the same pipeline should get the
same results, and no two targets in the same pipeline share the same seed. (Even
dynamic branches have different names and thus different seeds.) You can re-
cover the seed of a completed target with tar_meta(your_target, seed) and
run tar_seed_set() on the result to locally recreate the target’s initial RNG
state.

csv_dirs Nonempty character vector of known existing directories of CSV files to track
for changes.

pattern a regular expression to search for the applicable CSV files. Defaults to "^[VH]R.*\\.csv$".

batch_size Positive integer of length 1, number of files to partition into a batch. The default
is ten files per batch.

format Character, either "file", "file_fast", or "url". See the format argument of
targets::tar_target() for details.

repository Character of length 1, remote repository for target storage. Choices:

• "local": file system of the local machine.
• "aws": Amazon Web Services (AWS) S3 bucket. Can be configured with a

non-AWS S3 bucket using the endpoint argument of tar_resources_aws(),
but versioning capabilities may be lost in doing so. See the cloud stor-
age section of https://books.ropensci.org/targets/data.html for
details for instructions.

• "gcp": Google Cloud Platform storage bucket. See the cloud storage sec-
tion of https://books.ropensci.org/targets/data.html for details for
instructions.

Note: if repository is not "local" and format is "file" then the target
should create a single output file. That output file is uploaded to the cloud and
tracked for changes where it exists in the cloud. The local file is deleted after
the target runs.

iteration Character, iteration method. Must be a method supported by the iteration
argument of targets::tar_target(). The iteration method for the upstream
target is always "list" in order to support batching.

error Character of length 1, what to do if the target stops and throws an error. Options:

• "stop": the whole pipeline stops and throws an error.
• "continue": the whole pipeline keeps going.
• "abridge": any currently running targets keep running, but no new tar-

gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

• "null": The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

memory Character of length 1, memory strategy. If "persistent", the target stays in
memory until the end of the pipeline (unless storage is "worker", in which case
targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient", the target gets unloaded

https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html

6 tar_vue_csvs

after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file" with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent" means
it remains until the end of the pipeline and is then deleted, and "transient"
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection

Logical, whether to run base::gc() just before the target runs.
priority Numeric of length 1 between 0 and 1. Controls which targets get deployed first

when multiple competing targets are ready simultaneously. Targets with priori-
ties closer to 1 get dispatched earlier (and polled earlier in tar_make_future()).

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date. Only applies to the downstream target. The upstream
target always runs.

Examples

targets::tar_dir({
Download example data
download.file(

file.path('https://raw.githubusercontent.com/ocean-tracking-network/glatos',
'main/inst/extdata/VR2W_109924_20110718_1.csv'),

'VR2W_109924_20110718_1.csv'
)

for(i in 2:12){
file.copy(

'VR2W_109924_20110718_1.csv',
paste0('VR2W_109924_20110718_', i, '.csv')

)
}

Run workflow
targets::tar_script({

list(
telemetar::tar_vue_csvs(

my_detections,
getwd()

)
)

})

targets::tar_make(callr_function = NULL)

})

Index

tar_make_future(), 4, 6
tar_resources_aws(), 3, 5
tar_seed_set(), 2, 5
tar_vdat_read, 2
tar_vue_csvs, 4

7

	tar_vdat_read
	tar_vue_csvs
	Index

