
Package: wcUtils (via r-universe)
November 3, 2024

Title Utilities to Access the Wildlife Computers Data Portal API

Version 0.1

Description This package provides basic access and capabilities for
interacting with and downloading data from the Wildilfe
Computers Data Portal API. Where appropriate functions to
specify data types and tidy the data are employed.

Depends R (>= 3.1.1)

License CC0 | file LICENSE

LazyData true

Imports lubridate, readr, magrittr, tidyr, dplyr, httr, digest, XML,
xml2, jsonlite, data.table, janitor, fs, rlang, glue

RoxygenNote 7.2.3

Suggests testthat

Repository https://ocean-tracking-network.r-universe.dev

RemoteUrl https://github.com/noaa-afsc/wcUtils

RemoteRef HEAD

RemoteSha 150d1047e569a8ef4c367bd374b47e6bc16312b0

Contents
as_ecdf . 2
combine_ecdf . 3
drop_ecd_duplicates . 3
fixCSV . 4
format_bins . 5
make_names . 6
read_allmsg . 6
read_behav . 7
read_ecdf . 7
read_fastGPS . 8
read_histos . 9
read_locs . 9

1

2 as_ecdf

smooth_ecdf . 10
tidyDiveDepths . 10
tidyDiveDurations . 11
tidyTimeAtDepth . 12
tidyTimelines . 12
to_pdf . 13
wcGetDeployID . 14
wcGetDownload . 14
wcGetIDs . 15
wcGetProjectIDs . 16
wcGetPttID . 16
wcGetRecentIDs . 17
wcGetZip . 18
wcPOST . 18
wcUtils . 19

Index 21

as_ecdf Create An ECDF List

Description

This creates a standardized list for holding ECDF data and sets the class to ‘ecdf‘. The S3 class,
wcECDF consists of three named objects: ‘type‘, ‘percent_time‘, and ‘ecdf‘. The ‘type‘ object is
the same as that specified for the ‘type‘ parameter. The ‘percent_time‘ object holds the proportion
of the summary period the tag spent within the ‘shallow‘ or ‘deep‘ portion of the water column.
Lastly, the ‘ecdf‘ object is a data.frame with a column, ‘ecd_prop‘, that specifies the proportional
values for the ECDF and a column, ‘depth_break‘, that reports the corresponding depth value (in
meters).

Usage

as_ecdf(type, ecdf)

Arguments

type this is either ‘shallow‘ or ‘deep‘

ecdf a data.frame

Value

A list with three named objects (‘type‘,‘percent_time‘,‘ecdf‘) of class ‘wcECDF‘

combine_ecdf 3

combine_ecdf Combine Two ‘wcECDF‘ Objects Into a Single ECDF

Description

Combine Two ‘wcECDF‘ Objects Into a Single ECDF

Usage

combine_ecdf(ecdf1, ecdf2, return = "pdf")

Arguments

ecdf1 object of class ‘wcECDF‘; typically the *shallow* region

ecdf2 object of class ‘wcECDF‘; typically the *deep* region

Value

four-column data.frame with columns ‘ecd_prop‘, ‘pdf‘, ‘prob‘, and ‘depth_break‘

drop_ecd_duplicates Drop duplicates within an ECDF

Description

Drop duplicates within an ECDF

Usage

drop_ecd_duplicates(e)

Arguments

e

4 fixCSV

fixCSV Tidy a comma separated value (CSV) file

Description

Tidies up a Comma Separated Value (CSV) file, ensuring that each row of the table in the file
contains the same number of commas, and no empty rows are left below the table.

Usage

fixCSV(file, skip = 0, overwrite = FALSE)

Arguments

file character: the name of the CSV file to be ‘fixed’.

skip integer: the number of lines in the CSV file to skip before the header row of the
table. The skipped lines are copied directly to the output file unchanged. The
default is skip=0, implying that the header row is the first row of the CSV file.

overwrite logical: Write output to a separate, ‘FIXED’ file (overwrite=FALSE, the de-
fault), or overwrite the original file (overwrite=TRUE)? If overwrite=TRUE,
the original file is copied to a .BAK file before being overwritten.

Details

fixCSV tidies up a Comma Separated Value (CSV) file to ensure that the CSV file contains a strictly
rectangular block of data for input into R (ignoring any preliminary comment rows via the skip=
argument).

CSV formatted files are a plain text file format for tabular data, in which cell entries in the same row
of a table are separated by commas. When such files are exported from other applications such as
spreadsheet software, the software has to decide whether any empty cells to the right-hand side of,
or below, the table or spreadsheet should be represented by trailing commas in the CSV file. Such
decisions can result in a ‘ragged’ table in the CSV file, in which some rows contain fewer commas
(‘short rows’) or more commas (‘long rows’) than others, or where empty rows below the table are
included as comma-only rows in the CSV file.

While R’s read.table and related functions can sensibly extend short rows as needed, ragged
tables in a CSV file can still result in errors, unwanted empty rows (below the table) or unwanted
columns (to the right of the table) when the data is loaded into R.

fixCSV reads in a specified CSV file and removes or adds commas to rows, to ensure that each
row in the body of the table contains the same number of cells as the header row of the table.
Any empty rows below the table are also removed. The resulting table is then written back to file,
either to a new file with ‘FIXED’ added to the filename (argument overwrite=FALSE, the default)
or overwriting the original file (overwrite=TRUE - the original file is copied to a .BAK file before
being overwritten).

Note that:

format_bins 5

• The table of data in the CSV file must contain a header row of the correct length, since this row
is used to determine the correct number of columns for the table. Note: if this header row is
too short, then subsequent rows will be truncated to match the length of the header, so beware.
Misspecification of the skip= argument (see below) can similarly lead to such corruption of
the ‘fixed’ file.

• In the header row, any trailing commas representing empty cells to the right of the (non-
empty) header entries are first removed before determining the correct number of columns for
the table. Thus the length of the header row (and hence the assumed width of the entire table)
is determined by the right-most non-empty cell in the header row.

• fixCSV does not remove empty cells, rows or columns within the interior (or on the left side)
of the table - it is concerned only with the right and bottom boundaries of the table.

• A skip= argument is included to tell fixCSV to ignore the specified number of comment rows
preceding the header row. Such rows are simply copied over into the output file unchanged.
The default for this parameter is skip=0, so that the first row in the data file is assumed to be
the header row. As noted above, misspecification of this argument can seriously corrupt the
output.

• fixCSV can overwrite your data file(s) (via overwrite=TRUE), and althought it makes a backup
of your original file, you should still make sure that you have a separate backup of your data
file in a safe place before using this function! The author of this code takes no responsibility
for any data loss or corruption as a result of the use of this routine...

Author(s)

Alexander Zwart (alec.zwart at csiro.au)

Examples

Not run:

Assuming CSV file 'alleleDataFile.csv' exists in the current
directory. The following overwrites the CSV file - make sure
you have a backup!

fixCSV("alleleDataFile.csv",overwrite=TRUE)

End(Not run)

format_bins format bin labels

Description

format bin labels

6 read_allmsg

Usage

format_bins(bins)

Arguments

bins a vector of bin labels to be formated

Value

a vector of formated bin labels

make_names Expanded make.names function for creating consistent column names

Description

Expanded make.names function for creating consistent column names

Usage

make_names(x)

Arguments

x data frame with columns to be renamed

Value

a data frame

read_allmsg Parse a *-All.csv file into a proper data.frame

Description

Parse a *-All.csv file into a proper data.frame

Usage

read_allmsg(allmsg_file, to_lower = TRUE, fix_csv = FALSE)

Arguments

allmsg_file file path or file connection to a *-All.csv file

to_lower whether to convert the column names to lower case

fix_csv whether to attemtp to fix any comma, csv issues

read_behav 7

Value

a data frame

read_behav Parse a *-Behavior.csv file into a proper data.frame

Description

Parse a *-Behavior.csv file into a proper data.frame

Usage

read_behav(behav_file, to_lower = TRUE, fix_csv = FALSE)

Arguments

behav_file file path or file connection to a *-Behavior.csv file

to_lower whether to convert the column names to lower case

fix_csv whether to attempt to fix any comma, csv issues

Value

a data frame

read_ecdf Read and Tidy ECDF Data File

Description

This function is the workhorse of the ‘wcECDF‘ package. All ECDF data are stored within a
‘*-ECDHistos.csv‘ file that is output from either the Wildlife Computers Data Portal or DAP pro-
cessing software. The function presumes the ‘*-ECDHistos.csv‘ data file is provided as-is from
these sources and has not been edited. The resulting output is a nested ‘tibble‘ that adheres to tidy
data principles and includes new columns (‘shallow_ecdf‘, ‘deep_ecdf‘, ‘full_ecdf‘, and ‘full_pdf‘.

Usage

read_ecdf(ecdf_csv)

Arguments

ecdf_csv file path for the ‘*-ECDHistos.csv‘

8 read_fastGPS

Details

In addition to *tidying* up the original data into a more workable *long* format, this function
calculates four new columns.

shallow_ecdf The ‘shallow_ecdf‘ column is a list-col that contains nested S3 objects of class
‘wcECDF‘ representing the portion of the water column defined as ‘shallow‘.

deep_ecdf The ‘deep_ecdf‘ column is a list-col that contains nested S3 objects of class ‘wcECDF‘
representing the portion of the water column defined as ‘deep‘.

full_ecdf The combined ECDF for both shallow and deep regions. The resulting ECDF is
weighted based on the reported proportion of time spent within each region.

full_pdf The ‘full_ecdf‘ is transformed into a probability density function and two columns are
returned: ‘pdf‘ and ‘prob‘. The later represents the probability the tag spent time at a given depth.

Value

A nested tibble

read_fastGPS Parse a *-FastGPS.csv files into a proper data.frame

Description

Parse a *-FastGPS.csv files into a proper data.frame

Usage

read_fastGPS(gps_file, to_lower = TRUE, fix_csv = FALSE)

Arguments

gps_file file path or file connection to a *-FastGPS.csv file

to_lower whether to convert the column names to lower case

fix_csv whether to attemtp to fix any comma, csv issues

Value

a data frame

read_histos 9

read_histos Parse a *-Histos.csv files into a proper data.frame

Description

Parse a *-Histos.csv files into a proper data.frame

Usage

read_histos(
histo_file,
to_lower = TRUE,
dt_fmt = "%H:%M:%S %d-%b-%Y",
fix_csv = FALSE

)

Arguments

histo_file file path or file connection to a *-Histos.csv file
to_lower whether to convert the column names to lower case
dt_fmt format for the Date column
fix_csv whether to attemtp to fix any comma, csv issues

Value

a list of two data frames

read_locs Parse a *-Locations.csv files into a proper data.frame

Description

Parse a *-Locations.csv files into a proper data.frame

Usage

read_locs(loc_file, fix_csv = FALSE)

Arguments

loc_file file path or file connection to a *-Locations.csv file
fix_csv whether to attemtp to fix any comma, csv issues

Value

a data frame

10 tidyDiveDepths

smooth_ecdf Create smoothed ECDF

Description

Create smoothed ECDF

Usage

smooth_ecdf(ecdf, bin.width)

Arguments

bin.width

tidyDiveDepths Apply ’tidy’ data principles to the dive-depth histogram data stream

Description

tidyDiveDepths returns a ’tidy’d’ data frame of dive depth data

Usage

tidyDiveDepths(histos)

Arguments

histos a list returned from read_histos

Details

The histogram data stream is provided in a ’wide’ format (each row represents a time period and the
observed values are provided in 1 to 72 ’bin’ columns). This format can be difficult to work with in
R and other data analysis platforms (e.g. database tables), so we use the tidyr and dplyr packages
to manipulate the data into a more flexible, ’narrow’ format. This results in a data structure where
every row represents a single observation.

This is implemented, here, with the dive depth data. For dive depth data, the tag records the max-
imum depth experienced during a qualifying dive and tallies those dives into user-sepcified depth
bins and user-specified time bins. This, unlike with timeline data, requires some knowledge of
these user-specified bins. As long as the user has uploaded a configuration/report file to the Wildlife
Computers Data Portal, then the *-Histos.csv file provides information on the dive depth bins. If the
bin information is not available, the function will produce a warning and output files with generic
’Bin’ labels.

tidyDiveDurations 11

Value

a data frame with tidy, narrow data structure and actual dive depths bin limits (when provided)

tidyDiveDurations Apply ’tidy’ data principles to the dive-duration histogram data stream

Description

tidyDiveDurations returns a ’tidy’d’ data frame of dive duration data

Usage

tidyDiveDurations(histos)

Arguments

histos a list returned from read_histos

Details

The histogram data stream is provided in a ’wide’ format (each row represents a time period and the
observed values are provided in 1 to 72 ’bin’ columns). This format can be difficult to work with in
R and other data analysis platforms (e.g. database tables), so we use the tidyr and dplyr packages
to manipulate the data into a more flexible, ’narrow’ format. This results in a data structure where
every row represents a single observation.

This is implemented, here, with the dive duration data. For dive uration data, the tag records the
duration in seconds of a qualifying dive and tallies those durationso user-sepcified duration bins
and user-specified time bins. This, unlike with timeline data, requires some knowledge of these
user-specified bins. As long as the user has uploaded a configuration/report file to the Wildlife
Computers Data Portal, then the *-Histos.csv file provides information on the dive durations. If the
bin information is not available, the function will produce a warning and output files with generic
’Bin’ labels.

Value

a data frame with tidy, narrow data structure and actual dive duration bin limits (when provided)

12 tidyTimelines

tidyTimeAtDepth Apply ’tidy’ data principles to the time-at-depth histogram data stream

Description

tidyTimeAtDepth returns a ’tidy’d’ data frame of time-at-depth data

Usage

tidyTimeAtDepth(histos)

Arguments

histos a list returned from read_histos

Details

The histogram data stream is provided in a ’wide’ format (each row represents a time period and the
observed values are provided in 1 to 72 ’bin’ columns). This format can be difficult to work with in
R and other data analysis platforms (e.g. database tables), so we use the tidyr and dplyr packages
to manipulate the data into a more flexible, ’narrow’ format. This results in a data structure where
every row represents a single observation.

This is implemented, here, with the time-at-depth data. For time-at-depth data, the tag records
the portion of time the tag spent within user-defined dive depth bins. This, unlike with timeline
data, requires some knowledge of these user-specified bins. As long as the user has uploaded a
configuration/report file to the Wildlife Computers Data Portal, then the *-Histos.csv file provides
information on the time-at-depth bins. If the bin information is not available, the function will
produce a warning and output files with generic ’Bin’ labels.

Value

a tibble with tidy, narrow data structure and actual time-at-depth bin limits (when provided)

tidyTimelines Apply ’tidy’ data principles to the timeline histogram data stream

Description

tidyTimelines returns a ’tidy’d’ data frame of timeline data

Usage

tidyTimelines(histos, row_min = 1)

to_pdf 13

Arguments

histos a list returned from read_histos

row_min user defined minimum timeline records required; row_min = 2 will return NULL
unless at least 1 records are found.

Details

The histogram data stream is provided in a ’wide’ format (each row represents a time period and the
observed values are provided in 1 to 72 ’bin’ columns). This format can be difficult to work with in
R and other data analysis platforms (e.g. database tables), so we use the tidyr and dplyr packages
to manipulate the data into a more flexible, ’narrow’ format. This results in a data structure where
every row represents a single observation.

This is implemented, here, with the timeline data. For timeline data, tag ’dryness’ is provided as
either a percentage of each hour the tag was dry or as a binary (1 or 0) value representing whether a
tag was dry for a majority of a given 20-minute period. For both of these situations, the values for
the ’bin’ columns are predictable and we can, in addition to tidying the data structure, also turn the
bin values into actual time periods.

Value

a data frame with tidy, narrow data structure and actual time periods in place of bins

to_pdf Transform a ‘wcECDF‘ Object Into a Probability Density Function

Description

Transform a ‘wcECDF‘ Object Into a Probability Density Function

Usage

to_pdf(ecdf)

Arguments

ecdf two-column data.frame with ‘ecdf_prop‘ and ‘depth_break‘

Value

a two-column data.frame with ‘ecdf_prop‘ and ‘depth_break‘

14 wcGetDownload

wcGetDeployID Return a vector of data portal unique IDs associated with a given De-
ployID

Description

wcGetDeployID returns a vector of data portal unique ID(s)

Usage

wcGetDeployID(xml_content, deployid = NULL)

Arguments

xml_content XML content/data returned from wcPOST (with ’action=get_deployments’)

deployid valid deployid character (required)

Details

This function presumes a DeployID has been setup for deployments on the Wildife Computers Data
Portal. The vector of deployment ID(s) returned will be a subset that match the deployid character in
the function call. The list returned will also include a simple data frame with summary information
one can use to determine the appropriate id.

Value

a list with ids (a vector of deployment ids) and a df (data frame of deployment summaries)

wcGetDownload Retrieve data from Wildlife Computers Data Portal

Description

wcGetDownload will return a list of data frames containing deployment data

Usage

wcGetDownload(
id,
wc.key = Sys.getenv("WCACCESSKEY"),
wc.secret = Sys.getenv("WCSECRETKEY"),
keyfile = NULL,
tidy = TRUE

)

wcGetIDs 15

Arguments

id a single character representing a data portal unique deployment identifier

tidy whether to tidy the histogram data stream and create a timelines output

Details

The Wildlife Computers Data Portal will return deployment data in the form of a zipped file with
various comma-separated files and other accessory files. The *.csv files correspond to particular
data streams. This function, currently, focuses on the locations, behavior, histograms, timelines,
status, and messages data streams.

For most of the files, the data are read in with read.csv and, other than a few steps to set the data
types, the data are provided ’as is’. The one exception is the histogram data stream. Here, we use
the tidyr and dplyr package to ’tidy’ the data into a more appropriate data structure. For now,
this is only implemented with timeline data and the ’tidy’d’ data is provided within the list element
$timelines

Value

a list of data frames with up to 6 named elemnts (locations, behavior, histograms, status,timelines,messages)

wcGetIDs Return a vector of deployment IDs

Description

wcGetIDs returns a vector of deployment IDs

Usage

wcGetIDs(xml_content, xpath = NULL)

Arguments

xml_content XML content/data returned from wcPOST (with ’action=get_deployments’)

xpath additional customization possible by passing an xpath statement

Details

Each deployment in the Wildlife Computers Data Portal is identified by a unique alpha-numeric
value. This function searches the XML response data and extracts those IDs

Value

returns a vector of deployment IDs

16 wcGetPttID

wcGetProjectIDs Return a vector of deployment IDs associated with a given Project

Description

wcGetProjectIDs returns a vector of deployment IDs

Usage

wcGetProjectIDs(xml_content, project = NULL)

Arguments

xml_content XML content/data returned from wcPOST (with ’action=get_deployments’)

project valid project name (required)

Details

This function presumes a custom label,’Project’, has been setup for deployments on the Wildife
Computers Data Portal. The vector of deployment IDs returned will be a subset that match the
project name provided in the function call.

Value

returns a vector of deployment IDs

wcGetPttID Return a vector of deployment ID associated with a given PTT

Description

wcGetPttID returns a vector of deployment ID(s)

Usage

wcGetPttID(xml_content, ptt = NULL)

Arguments

xml_content XML content/data returned from wcPOST (with ’action=get_deployments’)

ptt valid ptt integer (required)

wcGetRecentIDs 17

Details

This function presumes a PTT has been setup for deployments on the Wildife Computers Data Por-
tal. The vector of deployment ID(s) returned will be a subset that match the ptt integer provided in
the function call. The list returned will also include a simple data frame with summary information
one can use to determine the appropriate id.

Value

a list with ids (a vector of deployment ids) and a df (data frame of deployment summaries)

wcGetRecentIDs Return a vector of deployment IDs with new data in the last n days

Description

wcGetProjectIDs returns a vector of deployment IDs

Usage

wcGetRecentIDs(xml_content, days = 14)

Arguments

xml_content XML content/data returned from wcPOST (with ’action=get_deployments’)

days integer value specifying the time window from now() in days

Details

This returns a subset of deployment IDs with new data available on the portal within the last n days.
The default value is for 14 days

Value

returns a vector of deployment IDs

18 wcPOST

wcGetZip Retrieve a single zip file from Wildlife Computers Data Portal

Description

wcGetZip will return a path to a downloaded zip file

Usage

wcGetZip(
id,
wc.key = Sys.getenv("WCACCESSKEY"),
wc.secret = Sys.getenv("WCACCESSKEY"),
keyfile = NULL

)

Arguments

wc.key public access key (default retrieves from option value set in .Renviron)

wc.secret secret access key (default retrieves from option value set in .Renviron)

keyfile path to a json formatted keyfile with WCACCESSKEY and wcSecretKey

Details

The Wildlife Computers Data Portal will return deployment data in the form of a zipped file with
various comma-separated files and other accessory files.

Value

a path to the zip file

wcPOST Send POST to Wildlife Computers Data Portal API

Description

wcPOST returns a response from a POST to the API

Usage

wcPOST(
wc.key = Sys.getenv("WCACCESSKEY"),
wc.secret = Sys.getenv("WCSECRETKEY"),
keyfile = NULL,
params = "action=get_deployments"

)

wcUtils 19

Arguments

wc.key public access key (default retrieves from option value set in .Renviron)

wc.secret secret access key (default retrieves from option value set in .Renviron)

keyfile path to a json formatted keyfile with WCACCESSKEY and WCSECRETKEY

params POST message (default returns a list of deployments)

Details

This function provides basic access to the API via POST. The params value contains the string to
include in the body of the POST. The default action is to return a list of deployments associated
with your account . Most users will likely not call this function directly, but instead, rely on other
helper/wrapper functions within the package.

The Wildlife Computers Data Portal API uses a form of keyed-hash message authentication code
for secure access. Your ’Access Key’ and ’Secret Key’ can be obtained from the data portal website
(Account Settings > Web Services Security). For security reasons you should NOT include the keys
as plain text in any scripts. Instead, include the key values as within your .Renviron.

Value

an httr response object is returned. Content of the response can be obtained with the httr::content()
function.

Setting key values within .Renviron

This option is a preferred option for storing keys, passwords and other sensitive values. Your
.Renviron should be secured via OS security/permissions (e.g. on Linux/OS X .Renviron is
stored within the home directory which is only accessible by an authorized user. However, you
should not share your .Renviron or include your .Renviron in version control (e.g. git) if you use
this option. An alternative is to read values from a different file in the home directory or to use OS
level environment variables.

preformatted WCACCESSKEY = ’E4iZhsfdje7590JDNR/VARTEZyhfwb84485X5Xw86ow=’ WC-
SECRETKEY = ’WIRJFYhfjdsuSEqKoE7WSDvXUHzVP0pHDJSscmeA7fw=’

wcUtils wcUtils: A package for import/export of Wildlife Computers tag data

Description

wcUtils provides functionality for working with data from select (SPLASH, SPOT) Wildlife Com-
puters satellite telemetry tags. The package relies on data files produced by the Wildlife Computers
DAP program or downloaded from the Wildlife Computers Data Portal. Data are read into R

20 wcUtils

wcUtils functions

• read_behav

• read_histos

• read_locs

• tidyDiveDepths

• tidyDiveDurations

• tidyTimeAtDepth

• tidyTimelines

• wcGetDownload

• wcGetIDs

• wcGetProjectIDs

• wcGetRecentIDs

• wcPOST

Index

as_ecdf, 2

combine_ecdf, 3

drop_ecd_duplicates, 3

fixCSV, 4
format_bins, 5

make_names, 6

read.table, 4
read_allmsg, 6
read_behav, 7
read_ecdf, 7
read_fastGPS, 8
read_histos, 9
read_locs, 9

smooth_ecdf, 10

tidyDiveDepths, 10
tidyDiveDurations, 11
tidyTimeAtDepth, 12
tidyTimelines, 12
to_pdf, 13

wcGetDeployID, 14
wcGetDownload, 14
wcGetIDs, 15
wcGetProjectIDs, 16
wcGetPttID, 16
wcGetRecentIDs, 17
wcGetZip, 18
wcPOST, 18
wcUtils, 19

21

	as_ecdf
	combine_ecdf
	drop_ecd_duplicates
	fixCSV
	format_bins
	make_names
	read_allmsg
	read_behav
	read_ecdf
	read_fastGPS
	read_histos
	read_locs
	smooth_ecdf
	tidyDiveDepths
	tidyDiveDurations
	tidyTimeAtDepth
	tidyTimelines
	to_pdf
	wcGetDeployID
	wcGetDownload
	wcGetIDs
	wcGetProjectIDs
	wcGetPttID
	wcGetRecentIDs
	wcGetZip
	wcPOST
	wcUtils
	Index

